Skip to main content
Log in

Technologies for Forming Electrodynamic Structures for Millimeter-Wave and Terahertz Vacuum Microelectronic Devices (Review)

  • TO THE 85th ANNIVERSARY OF N.I. SINITSYN
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The electrodynamic microstructure technologies for production of millimeter and submillimeter-wave vacuum microelectronic devices are reviewed, including photolithography, deep reactive ion etching, computer numerical control micro- and nanomilling, electro-erosive micromachining, and additive technologies: 3D printing, selective laser sintering, and selective laser melting. An original approach to manufacture of planar slow-wave systems based on magnetron sputtering and laser ablation is discussed. Technological tolerances and surface roughness that can be obtained using the considered technologies are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. The LIGA acronym owes its origin to the German names of the main process stages: lithography (Lithographie), electroforming (Galvanoformung), and molding (Abformung).

REFERENCES

  1. S. S. Dhillon, M. S. Vitiello, E. H. Linfield, et al., J. Phys. D: Appl. Phys. 50, 043001 (2017). https://doi.org/10.1088/1361-6463/50/4/043001

    Article  Google Scholar 

  2. R. A. Lewis, J. Phys. D: Appl. Phys. 47, 374001 (2014). https://doi.org/10.1088/0022-3727/47/37/374001

    Article  Google Scholar 

  3. J. H. Booske, R. J. Dobbs, C. D. Joye, et al., IEEE Trans. Terahertz Sci. Technol. 1 (1), 54–75 (2011). https://doi.org/10.1109/TTHZ.2011.2151610

    Article  Google Scholar 

  4. H.-J. Song and T. Nagatsuma, IEEE Trans. Terahertz Sci. Technol. 1 (1), 256–263 (2011). https://doi.org/10.1109/TTHZ.2011.2159552

    Article  Google Scholar 

  5. R. Appleby and H. B. Wallace, IEEE Trans. Antennas Propag. 55, 2944–2956 (2007). https://doi.org/10.1109/TAP.2007.908543

    Article  Google Scholar 

  6. H. B. Wallace, Appl. Opt. 49 (19), E38 (2010). https://doi.org/10.1364/AO.49.000E38

    Article  Google Scholar 

  7. J. F. Federici, J. Infrared, Millimeter, Terahertz Waves 33 (2), 97 (2012). https://doi.org/10.1109/TMTT.2004.835916

    Article  Google Scholar 

  8. P. H. Siegel, IEEE Trans. Microwave Theory Tech. 52, 2438 (2004). https://doi.org/10.1109/TMTT.2004.835916

    Article  Google Scholar 

  9. A. D. Grigoriev, V. A. Ivanov, and S. I. Molokovsky, Microwave Electronics (Springer-Verlag, Cham, 2018). https://doi.org/10.1007/978-3-319-68891-6

    Book  Google Scholar 

  10. M. J. Madou, Fundamentals of Microfabrication (CRC Press, 2002).

    Google Scholar 

  11. R. Zaouk, B. Y. Park, and M. J. Madou,”Introduction to Microfabrication Techniques,” in Microfluidic Techniques, by Ed. Shelley D. Minteer (Humana Press, New Jersey, 2006), p. 3.

  12. S. Wang, S. Aditya, X. Xia, et al., IEEE Trans. Plasma Sci. 47 (10), 4650 (2019). https://doi.org/10.1109/TPS.2019.2940254

    Article  Google Scholar 

  13. X. Li, T. He, H. Wang, et al., J. Eng. 2018 (14), 692 (2018). https://doi.org/10.1049/joe.2018.0095

    Article  Google Scholar 

  14. N. M. Ryskin, R. A. Torgashov, A. V. Starodubov, et al., J. Vac. Sci. Technol. B 22, 013204 (2021). https://doi.org/10.1116/6.0000716

    Article  Google Scholar 

  15. G. Ulisse and V. Krozer, IEEE Electron Device Lett. 38 (1), 126 (2017). https://doi.org/10.1109/LED.2016.2627602

    Article  Google Scholar 

  16. D. W. L. Tolfree, Reports Prog. Phys. 61 (4), 313–351 (1998). https://doi.org/10.1088/0034-4885/61/4/001

    Article  Google Scholar 

  17. S. Bhattacharjee, J. H. Booske, C. L. Kory, et al., IEEE Trans. Plasma Sci. 32 (3), 1002 (2004). https://doi.org/10.1109/TPS.2004.828886

    Article  Google Scholar 

  18. S.-T. Han, K.-H. Jang, J.-K. So, et al., IEEE Trans. Plasma Sci. 32 (1), 60 (2004). https://doi.org/10.1109/TPS.2004.823978

    Article  Google Scholar 

  19. Y. M. Shin, J. K. So, S. T. Han, et al., Appl. Phys. Lett. 88 (9), 091916 (2006). https://doi.org/10.1063/1.2178770

    Article  Google Scholar 

  20. K. H. Jang, J. J. Choi, and J. H. Kim, J. Korean Phys. Soc. 75 (9), 716 (2019). https://doi.org/10.3938/jkps.75.716

    Article  Google Scholar 

  21. Y. M. Shin, L. R. Barnett, D. Gamzina, et al., Appl. Phys. Lett. 95, 181505 (2009). https://doi.org/10.1063/1.3259823

    Article  Google Scholar 

  22. C. Chua, J. M. Tsai, S. Aditya, et al., IEEE Trans. Electron Devices 58 (11), 4098 (2011). https://doi.org/10.1109/TED.2011.2165284

    Article  Google Scholar 

  23. H. Li, Y. Li, and J. Feng, IEEE Electron Device Lett. 34 (3), 462 (2013). https://doi.org/10.1109/LED.2013.2241389

    Article  Google Scholar 

  24. C. D. Joye, A. M. Cook, J. P. Calame, et al., IEEE Trans. Electron Devices 61 (6), 1672 (2014). https://doi.org/10.1109/TED.2014.2300014

    Article  Google Scholar 

  25. L. Yao, J.-Y. Yao, Z.-Q. Yang, et al., IEEE Nanotechnol. Mag. 13 (5), 35 (2019). https://doi.org/10.1109/MNANO.2019.2927798

    Article  Google Scholar 

  26. S. Sengele, H. Jiang, J. H. Booske, et al., IEEE Trans. Electron Devices 56, 730 (2009). https://doi.org/10.1109/TED.2009.2015416

    Article  Google Scholar 

  27. M. R. Lueck, D. Malta, K. Gilchrist, et al., J. Micromech. Microeng. 21, 065022 (2011). https://doi.org/10.1088/0960-1317/21/6/065022

    Article  Google Scholar 

  28. K. E. Kreischer, J. C. Tucek, D. A. Gallagher, and R. E. Mihailovich, in Proc. 33rd Int. Conf. Infrared, Millimeter and Terahertz Waves, Pasadena, Sept. 15–19, 2008 (IEEE, New York, 2008). https://doi.org/10.1109/ICIMW.2008.4665704

  29. J. C. Tucek, M. A. Basten, D. A. Gallagher, and K. E. Kreischer, in Proc. IEEE 14th Int. Vacuum Electronics Conf. (IVEC), Paris, May 21–23, 2013 (IEEE, New York, 2013), p. 6571144. https://doi.org/10.1109/IVEC.2013.6571144

  30. J. C. Tucek, M. A. Basten, D. A. Gallagher, and K. E. Kreischer, in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, Apr. 22–24, 2014 (IEEE, New York, 2014), p. 153. https://doi.org/10.1109/IVEC.2014.6857535

  31. J. C. Tucek, M. A. Basten, D. A. Gallagher, and K. E. Kreischer, in Proc. IEEE Int. Vacuum Electronics Conf., (IVEC), Monterey, Apr. 19–21, 2016 (IEEE, New York, 2016), p. 7561772. https://doi.org/10.1109/IVEC.2016.7561772

  32. D. K. Chung, K. H. Lee, J. Jeong, and C. N. Chu, Int. J. Precis. Eng. Manuf. 15 (9), 1785 (2014). https://doi.org/10.1007/s12541-014-0530-7

    Article  Google Scholar 

  33. H. S. Lim, Y. S. Wong, M. Rahman, and M. K. E. Lee, J. Mater. Process. Technol. 140 (1–3), 318 (2003). https://doi.org/10.1016/S0924-0136(03)00760-X

    Article  Google Scholar 

  34. L. Uriarte, A. Herrero, A. Ivanov, et al., Proc. Inst. Mech. Eng. Pt C. J. Mech. Eng. Sci. 220 (11), 1665 (2006). https://doi.org/10.1243/09544062JMES220

    Article  Google Scholar 

  35. A. Baig, D. Gamzina, T. Kimura, et al., IEEE Trans. Electron Devices 64 (5), 2390 (2017). https://doi.org/10.1109/TED.2017.2682159

    Article  Google Scholar 

  36. D. Gamzina, L. G. Himes, R. Barchfeld, et al., IEEE Trans. Electron Devices 63 (10), 4067 (2016). https://doi.org/10.1109/TED.2017.2706059

    Article  Google Scholar 

  37. W. Choi, I. Lee, and E. M. Choi, IEEE Trans. Electron Devices 64 (7), 2955 (2017). https://doi.org/10.1109/TED.2017.2706059

    Article  Google Scholar 

  38. P. Hu, W. Lei, Y. Jiang, et al., IEEE Trans. Electron Devices 65 (6), 2164 (2018). https://doi.org/10.1109/TED.2017.2787682

    Article  Google Scholar 

  39. B. Zhang, Y.-X. Guo, H. Zirath, and Y. P. Zhang, Proc. IEEE 105 (4), 723 (2016). https://doi.org/10.1109/JPROC.2016.2639520

    Article  Google Scholar 

  40. J. Shen and D. S. Ricketts, IEEE Trans. Microwave Theory Tech. 67 (3), 883 (2019). https://doi.org/10.1109/TMTT.2018.2889452

    Article  Google Scholar 

  41. A. M. Cook, C. D. Joye, and J. P. Calame, IEEE Access 7, 72561 (2019). https://doi.org/10.1109/ACCESS.2019.2920291

    Article  Google Scholar 

  42. A. I. Dimitriadis, T. Debogović, M. Favre, et al., Proc. IEEE 105 (4), 668 (2016). https://doi.org/10.1109/JPROC.2016.2629511

    Article  Google Scholar 

  43. B. Zhang and H. Zirath, IEEE Trans. Compon., Packag. Manuf. Technol. 6 (5), 796 (2016). https://doi.org/10.1109/TCPMT.2016.2550483

    Article  Google Scholar 

  44. M. D. Proyavin, A. A. Vikharev, A. E. Fedotov, et al., Izv. Vyssh. Uchebn. Zaved. Radiofiz. 63, 521 (2020). https://doi.org/10.1007/s11141-021-10072-0

    Article  Google Scholar 

  45. L. Hirt, S. Ihle, Z. Pan, et al., Adv. Mater. 28 (12), 2311 (2016). https://doi.org/10.1002/adma.201504967

    Article  Google Scholar 

  46. G. Ercolano, T. Zambelli, C. van Nisselroy, et al., Adv. Eng. Mater. 22 (2), 1900961 (2020). https://doi.org/10.1002/adem.201900961

    Article  Google Scholar 

  47. G. Ulisse, P. Schurch, W. W. Koelmans, and V. Krozer, in Proc. 46th Int. Conf. Infrared, Millimeter and Terahertz Waves (IRMMW-THz). Chengdu. Aug. 29–Sept. 3, 2021 (IEEE, New York, 2021). https://doi.org/10.1109/IRMMW-THz50926.2021.9567223

  48. A. Žemaitis, M. Gaidys, M. Brikas, et al., Sci. Rep. 8, 17376 (2018). https://doi.org/10.1038/s41598-018-35604-z

    Article  Google Scholar 

  49. C. Liu, X. Fu, Y. Wu, et al., J. Vac. Sci. Technol. B: Microelectron. Microelectron. Nanom. Struct. 27, 1319 (2009). https://doi.org/10.1116/1.3119676

    Article  Google Scholar 

  50. K. H. Leitz, B. Redlingshöfer, Y. Reg, et al., Phys. Procedia 12, 230 (2011). https://doi.org/10.1016/j.phpro.2011.03.128

    Article  Google Scholar 

  51. W. J. Keller, N. Shen, A. M. Rubenchik, et al., J. Appl. Phys. 125, 085103 (2019). https://doi.org/10.1063/1.5080628

    Article  Google Scholar 

  52. K. Sugioka and Y. Cheng, Appl. Phys. Rev. 1, 041303 (2014). https://doi.org/10.1063/1.4904320

    Article  Google Scholar 

  53. N. M. Ryskin, A. G. Rozhnev, A. V. Starodubov, et al., IEEE Electron Device Lett. 39, 757 (2018). https://doi.org/10.1109/LED.2018.2821770

    Article  Google Scholar 

  54. A. V. Starodubov, A. A. Serdobintsev, A. M. Pavlov, et al., in Progress in Electromagnetics Research Symp. (PIERS-Toyama), Toyama, Aug. 1–4, 2018 (IEEE, New York, 2018), p. 506. https://doi.org/10.23919/PIERS.2018.8597953

  55. A. V. Starodubov, A. A. Serdobintsev, A. M. Pavlov, et al., in IEEE Int. Vacuum Electronics Conf. (IVEC-2018), Monterey, Apr. 26–28, 2018 (IEEE, New York, 2018), p. 333. https://doi.org/10.1109/IVEC.2018.8391512

  56. Yu. V. Gulyaev, A. I. Zhbanov, Yu. F. Zakharchenko, et al., Radiotekh. Elektron. (Moscow) 39, 2049 (1994).

    Google Scholar 

  57. A. I. Benedik, A. G. Rozhnev, N. M. Ryskin, et al., in Proc. IEEE Int. Vacuum Electronics Conf. (IVEC), Beijing, Apr. 27–29, 2015 (IEEE, New York, 2015), p. 7223750. https://doi.org/10.1109/IVEC.2015.7223750

  58. M. Sumathy, D. Augustin, S. K. Datta, et al., IEEE Trans. Electron Devices 60 (5), 1769 (2013). https://doi.org/10.1109/TED.2013.2252179

    Article  Google Scholar 

  59. S. Wang, S. Aditya, X. Xia, et al., IEEE Trans. Electron Devices 65 (6), 2142 (2018). https://doi.org/10.1109/TED.2018.2798575

    Article  Google Scholar 

  60. A. V. Starodubov, A. A. Serdobintsev, A. M. Pavlov, et al., in Proc. IEEE Int. Vacuum Electronics Conf. (IVEC-2018), Monterey, Apr. 26–28, 2018 (IEEE, New York, 2018), p. 421. https://doi.org/10.1109/IVEC.2018.8391530

  61. G. Ulisse, A. V. Starodubov, V. V. Galushka, et al., in Proc. Int. Vacuum Electronics Conf. (IVEC), Busan, Apr. 28–May 1, 2019 (IEEE, New York, 2019). p. 8744932. https://doi.org/10.1109/IVEC.2019.8744932

  62. A. V. Starodubov, A. M. Pavlov, V. V. Galushka, et al., in Proc. Int. Vacuum Electronics Conf. (IVEC), Busan, Apr. 28–May 1, 2019 (IEEE, New York, 2019). p. 8745185. https://doi.org/10.1109/IVEC.2019.8745185

  63. R. A. Torgashov, N. M. Ryskin, A. G. Rozhnev, A. V. Starodubov, A. A. Serdobintsev, A. M. Pavlov, V. V. Galushka, I. Sh. Bakhteev, and S. Yu. Molchanov, Tech. Phys. 20, 660 (2020). https://doi.org/10.21883/JTF.2020.04.49096.294-19

    Article  Google Scholar 

  64. A. V. Starodubov, A. A. Serdobintsev, I. O. Kozhev-nikov, et al., Proc. SPIE–Int. Soc. Opt. Eng. 11458 (2020). https://doi.org/10.1117/12.2564423

Download references

Funding

This work was supported by the Russian Science Foundation (Production and Study of 3D Printed Structures), project no. 22-12-00181 and the Russian Foundation for Basic Research (Laser Ablation Production and Study of Structures), project no. 20-07-00929.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Starodubov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starodubov, A.V., Nozhkin, D.A., Rasulov, I.I. et al. Technologies for Forming Electrodynamic Structures for Millimeter-Wave and Terahertz Vacuum Microelectronic Devices (Review). J. Commun. Technol. Electron. 67, 1189–1197 (2022). https://doi.org/10.1134/S1064226922100126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922100126

Navigation