Skip to main content
Log in

2D Structures Based Field-Effect Transistors (Review)

  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

We review the design and main parameters of field-effect transistors based on 2D structures of transition metal di- and trichalcogenides MoS2, MoSe2, MoTe2, WS2, WSe2, Mo1 ‒ xWxSe2, ZrS2, ZrSe2, HfS2, HfSe2, PtS2, PtSe2, PtTe2, PdSe2, ReS2, ReSe2, HfS3, ZrS3, TiS3, TaSe3, and NbS3, as well as monoatomic phosphorene (2DbP), antimonene (2DSb), arsenene (2DAs), silicene (2DSi), germanene (2DGe), and stanene (2DSn). Field-effect nanotransistors on flexible substrates, tunnel, and single-electron transistors based on van der Waals structures of graphene quantum dots, as well as transistors containing 2D heteropairs Gr‒(h)BN, Gr‒WS2, Gr‒(h)BC2N, Gr‒FGr, SnS2‒WS2, SnSe2‒WSe2, HfS2‒MoS2, PdSe2‒MoS2, and WSe2‒WO3 – x are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. P. Ponomarenko, V. S. Popov, and S. V. Popov, “Graphene structures-based 2D nanotransistors (Review),” J. Commun. Technol. Electron. 66, 1108 (2021).

    Article  Google Scholar 

  2. V. P. Ponomarenko, V. S. Popov, S. V. Popov, and E. L. Chepurnov, “Photo- and nanoelectronics based on two-dimensional materials. Part I. Two-dimensional materials: properties and synthesis (Review),” J. Commun. Technol. Electron. 65, 1062 (2020).

    Article  Google Scholar 

  3. Z. Bao, A. Dodabalapur, and A. J. Lovinger, Appl. Phys. Lett. 69, 4108 (1996).

    Article  Google Scholar 

  4. H. Sirringhaus, N. Tessler, and R. H. Friend, Science, 280, 1741 (1998).

    Article  Google Scholar 

  5. B. A. Ridley, B. Nivi, and J. M. Jacobson, Science, 286, 746 (1999).

    Article  Google Scholar 

  6. C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, Science 286, 945 (1999).

    Article  Google Scholar 

  7. X. Duan, C. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles, and J. L. Goldman, Nature 425, 274 (2003).

    Article  Google Scholar 

  8. V. Podzorov, M. E. Gershenson, Ch. Kloc, R. Zeis, and E. Bucher, Appl. Phys. Lett. 84, 3301 (2004). https://doi.org/10.1063/1.1723695

    Article  Google Scholar 

  9. Y. Yoon, K. Ganapathi, and S. Salahuddin, Nano Lett. 11, 3768 (2011).

    Article  Google Scholar 

  10. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nature Nanotechnol. 6, 147 (2011).

    Article  Google Scholar 

  11. S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller, Nano Lett. 13, 100 (2012). https://doi.org/10.1021/nl303583v

    Article  Google Scholar 

  12. S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, Nature Commun. 3, 1011(2012). https://doi.org/10.1038/ncomms2018

    Article  Google Scholar 

  13. H. Liu and P. D. Ye, IEEE Electron. Device Lett. 33, 546 (2012).

    Article  Google Scholar 

  14. J. Pu, Y. Yomogida, K.-K. Liu, L.-J. Li, Y. Iwasa, and T. Takenobu, Nano Lett. 12, 4013 (2012).

    Article  Google Scholar 

  15. G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee, M. S. Choi, D. Y. Lee, C. Lee, W. J. Yoo, K. Watanabe, T. Taniguchi, C. Nuckolls, P. Kim, and J. Hone, ACS Nano 7, 7931 (2013).

    Article  Google Scholar 

  16. J. Yoon, W. Park, G.-Y. Bae, Y. Kim, H. S. Jang, Y. Hyun, S. K. Lim, Y. H. Kahng, W.-K. Hong, B. H. Lee, and H. C. Ko, Small (2013). https://doi.org/10.1002/smll.201300134

  17. R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss, H.‑C. Cheng, H. Wu, Y. Huang, and X. Duan, Nature Commun. (2014). https://doi.org/10.1038/ncomms6143

  18. T. Roy, M. Tosun, J. S. Kang, A. B. Sachid, S. B. Desa, M. Hettick, C. C. Hu, and A. Javey, ACS Nano (2014). https://doi.org/10.1021/nn501723y

  19. A.-J. Cho, K. C. Park, and J.-Y. Kwon, Nanoscale Res. Lett. (2015). https://doi.org/10.1186/s11671-015-0827-1

  20. S. A. Han, R. Bhatia, and S.-W. Kim, Nano Convergence (2015). https://doi.org/10.1186/s40580-015-0048-4

  21. A. Sanne, R. Ghosh, A. Rai, H. C. P. Movva, A. Sharma, R. Rao, L. Mathew, and S. K. Banerjee, Appl. Phys. Lett. 106, 062101 (2015).

    Article  Google Scholar 

  22. X. Tong, E. Ashalley, F. Lin, H. Li, and Z. M. Wang, Nano-Micro Lett. (2015). https://doi.org/10.1007/s40820-015-0034-8

  23. A. L. Friedman, A. T. Hanbicki, F. K. Perkins, G. G. Jernigan, J. C. Culbertson, and P. M. Campbell, Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-04224-4

  24. A. Horri, R. Faez, M. Pourfath, and G. Darvish, IEEE Trans. Electron Devices 64, 3459 (2017). https://doi.org/10.1109/TED.2017.2716938

    Article  Google Scholar 

  25. J. Robertson, X. Liu, C. Yue, M. Escarra, and J. Wei, 2D Mater (2017). https://doi.org/10.1088/2053-1583/aa8678

  26. A. Sanne, S. Park, R. Ghosh, M. N. Yogeesh, C. Liu, L. Mathew, R. Rao, D. Akinwande, and S. K. Banerjee, 2D Mater. & Appl. (2017). https://doi.org/10.1038/s41699-017-0029-z

  27. H. Xu, H. Zhang, Z. Guo, Y. Shan, S. Wu, J. Wang, W. Hu, H. Liu, Z. Sun, C. Luo, X. Wu, Z. Xu, D. W. Zhang, W. Bao, and P. Zhou, Small, 1803465 (2018).

  28. N. R. Pradhan, D. Rhodes, Y. Xin, S. Memaran, L. Bhaskaran, M. Siddiq, S. Hill, P. M. Ajayan, and L. Balicas, ACS Nano (2014). https://doi.org/10.1021/nn501693d

  29. S. R. Das, J. Kwon, A. Prakash, C. J. Delker, S. Das, and D. B. Janes, Appl. Phys. Lett., 106, 083507 (2015). https://doi.org/10.1063/1.4913714

    Article  Google Scholar 

  30. Y. Jeong, J. H. Park, J. Ahn, J. Y. Lim, E. Kim, and S. Im, Adv. Mater. Interfaces, 1800812 (2018).

  31. H. Lee, J. Ahn, S. Im, J. Kim, and W. Choi, Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-29942-1

  32. S. Fathipour, N. Ma, W. S. Hwang, V. Protasenko, S. Vishwanath, H. G. Xing, H. Xu, D. Jena, J. Appenzeller, and A. Seabaugh, Appl. Phys. Lett. 105, 192101 (2014).

    Article  Google Scholar 

  33. N. R. Pradhan, D. Rhodes, S. Feng, Y. Xin, S. Memaran, B.-H. Moon, H. Terrones, M. Terrones, and L. Balicas, ACS Nano (2014). https://doi.org/10.1021/nn501013c

  34. L. Yin, X. Zhan, K. Xu, F. Wang, Z. Wang, Y. Huang, Q. Wang, C. Jiang, and J. Heb, Appl. Phys. Lett. 108, 043503 (2016). https://doi.org/10.1063/1.4941001

    Article  Google Scholar 

  35. B. Sirota, N. Glavin, S. Krylyuk, A. V. Davydov, and A. A. Voevodin, Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-26751-4

  36. X. Liu, J. Hu, C. Yue, N. D. Fera, Y. Ling, Z. Mao, and J. Wei, ACS Nano (2014), https://doi.org/10.1021/nn505253p

  37. M. W. Iqbal, M. Z. Iqbal, M. F. Khan, M. A. Shehzad, Y. Seo, and J. Eom, Nanoscale (2014). https://doi.org/10.1039/C4NR05129G

  38. M. W. Iqbal, M. Z. Iqbal, M. F. Khan, M. A. Shehzad, Y. Seo, J. H. Park, C. Hwang, and J. Eom, Sci. Rep. (2015). https://doi.org/10.1038/srep10699

  39. Y. Cui, R. Xin, Z. Yu, Y. Pan, Z.-Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y.-W. Zhang, and X. Wang, Adv. Mater. 27, 5230 (2015).

    Article  Google Scholar 

  40. H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, Nano Lett. (2012). https://doi.org/10.1021/nl301702r

  41. W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, Nano Lett. 13, 1983 (2013).

    Article  Google Scholar 

  42. B. Liu, Y. Ma, A. Zhang, L. Chen, A. N. Abbas, Y. Liu, C. Shen, H. Wan, and C. Zhou, ACS Nano (2016). https://doi.org/10.1021/acsnano.6b00527

  43. P. R. Pudasaini, A. Oyedele, C. Zhang, M. G. Stanford, N. Cross, A. T. Wong, A. N. Hoffman, K. Xiao, G. Duscher, D. G. Mandrus, T. Z. Ward, and P. D. Rack, Nano Res. (2017). https://doi.org/10.1007/s12274-017-1681-5

  44. J. He, N. Fang, K. Nakamura, K. Ueno, T. Taniguchi, K. Watanabe, and K. Nagashio, Adv. Electron. Mater, 1800207 (2018). https://doi.org/10.1002/aelm.201800207

  45. M. Si, C. Jiang, W. Chung, Y. Du, M. A. Alam, and P. D. Ye, Nano Lett. 18, 18, 3682 (2018).

    Article  Google Scholar 

  46. F. Liu, J. Wang, and H. Guo, Nanotecnology 26, 175201 (2015). https://doi.org/10.1088/0957-4484/26/17/175201

    Article  Google Scholar 

  47. M. Zhang, J. Wu, Y. Zhu, D. O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, C. Jin, S. H. Chaki, Y.-S. Huang, J. Zhang, and L. Xie, ACS Nano 8, 7130 (2014). https://doi.org/10.1-21/nn5020566

  48. M. Zhang, Y. Zhu, X. Wang, Q. Feng, S. Qiao, W. Wen, Y. Chen, M. Cui, J. Zhang, C. Cai, and L. Xie, J. Am. Chem. Soc. (2015). https://doi.org/10.1021/jacs.5b03807

  49. Y. Zhu, X. Wang, M. Zhang, C. Cai, and L. Xie, Nano Res. 9, 2931 (2016).

    Article  Google Scholar 

  50. C. Yan, C. Gong, P. Wangyang, J. Chu, K. Hu, C. Li, X. Wang, X. Du, T. Zhai, Y. Li, and J. Xiong, Adv. Funct. Mater., 1803305 (2018).

  51. M. J. Mleczko, C. Zhang, H. R. Lee, H.-H. Kuo, B. Magyari-Köpe, R. G. Moore, Z.-X. Shen, I. R. Fisher, Y. Nishi, and E. Pop, Sci. Adv. (2017). https://doi.org/10.1126/sciadv.1700481

  52. K. Xu, Z. Wang, F. Wang, Y. Huang, F. Wang, L. Yin, C. Jiang, and J. He, Adv. Mater. 27, 7881 (2015).

    Article  Google Scholar 

  53. T. Kanazawa, T. Amemiya, A. Ishikawa, V. Upadhyaya, K. Tsuruta, T. Tanaka, and Y. Miyamoto, Sci. Rep. (2016). https://doi.org/10.1038/srep22277

  54. L. Fu, F. Wang, B. Wu, N. Wu, W. Huang, H. Wang, C. Jin, L. Zhuang, J. He, L. Fu, and Y. Liu, Adv. Mater. 29, 1700439 (2017).

    Article  Google Scholar 

  55. X.-R. Nie, B.-Q. Sun, H. Zhu, M. Zhang, D.‑H. Zhao, L. Chen, Q.-Q. Sun, and D. W. Zhang, ACS Appl. Mater. Interfaces (2017). https://doi.org/10.1021/acsami.7b06160

  56. M. Kang, S. Rathi, I. Lee, and D. Lim, J. Wang, L. Li, M. A. Khan, and G.-H. Kim, Appl. Phys. Lett. 106, 143108 (2015).

    Article  Google Scholar 

  57. M. Kang, S. Rathi, I. Lee, L. Li, M. A. Khan, D. Lim, Y. Lee, J. Park, S. J. Yun, D.-H. Youn, C. Jun, and G.‑H. Kim, Nanoscale, 9, 1645 (2017).

    Article  Google Scholar 

  58. D. Zhao, S. Xie, Y. Wang, H. Zhu, L. Chen, Q. Sun, and D. W. Zhang, AIP Adv. 9, 025225 (2019), https://doi.org/10.1063/1.5086447

    Article  Google Scholar 

  59. Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji, and Y. Chai, Adv. Mater. 29, 1604230 (2017).

    Article  Google Scholar 

  60. A. Ciarrocchi, A. Avsar, D. Ovchinnikov, and A. Kis, Nature Commun. (2018). https://doi.org/10.1038/s41467-018-03436-0

  61. M. Huifang, P. Chen, B. Li, J. Li, R. Ai, Z. Zhang, G. Sun, K. Yao, Z. Lin, B. Zhao, R. Wu, X. Tang, X. Duan, and X. Duan, Nano Lett. (2018). https://doi.org/10.1021/acs.nanolett.8b00583

  62. M. Ghorbani-Asl, A. Kuc, P. Miró, and T. Heine, Adv. Mater. 28, 853 (2016).

    Article  Google Scholar 

  63. M. Perucchini, D. Marian, E. G. Marin, G. Iannaccone, and G. Fiori, Graphene (2019).

  64. W. L. Chow, P. Yu, F. Liu, J. Hong, X. Wang, Q. Zeng, C.-H. Hsu, C. Zhu, J. Zhou, X. Wang, J. Xia, J. Yan, Y. Chen, D. Wu, T. Yu, Z. Shen, H. Lin, C. Jin, B. K. Tay, and Z. Liu, Adv. Mater. 1602969 (2017). https://doi.org/10.1002/adma.201602969

  65. C. M. Corbet, C. McClellan, A. Rai, S. S. Sonde, E. Tutuc, and S. K. Banerjee, ACS Nano 9 (1), 363 (2015).

    Article  Google Scholar 

  66. X. He, F. Liu, P. Hu, W. Fu, X. Wang, Q. Zeng, W. Zhao, and Z. Liu, Small (2015). https://doi.org/10.1002/smll.201501488

  67. E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, Nature Commun. (2015). https://doi.org/10.1038/ncomms7991

  68. E. Zhang, Y. Jin, X. Yuan, W. Wang, C. Zhang, L. Tang, S. Liu, P. Zhou, Hu W. Weida, and F. Xiu, Adv. Funct. Mater 25, 4076 (2015), https://doi.org/10.1002/adfm.201500969

    Article  Google Scholar 

  69. J. Shim, A. Oh, D.-H. Kang, S. Oh, S. K. Jang, J. Jeon, M. H. Jeon, M. Kim, C. Choi, J. Lee, S. Lee, G. Y. Yeom, Y. J. Song, and J.-H. Park, Adv. Mater. (2016). https://doi.org/10.1002/adma.201601002

  70. O. B. Mohammed, H. C. P. Movva, N. Prasad, A. Valsaraj, S. Kang, C. M. Corbet, T. Taniguchi, K. Watanabe, L. F. Register, E. Tutuc, and S. K. Banerjee, J. Appl. Phys. 122, 245701 (2017).

    Article  Google Scholar 

  71. J. Y. Park, H.-E. Joe, H. S. Yoon, S.-H. Yoo, T. Kim, K. Kang, B.-K. Min, and S. C. Jun, ACS Appl. Mater. & Interfaces (2017). https://doi.org/10.1021/acsami.7b06432

  72. N. Gao, S. Zhou, N. Liu, Y. Bai, and J. Zhao, J. Mater. Chem., C (2018). https://doi.org/10.1039/C8TC02116C

  73. W. Liao, W. Wei, Y. Tong, W. K. Chim, and C. Zhu, ACS Appl. Mater. & Interfaces (2018). https://doi.org/10.1021/acsami.8b00193

  74. A. Khosravi, R. Addou, M. Catalano, J. Kim, and R. M. Wallace, Materials (2019). https://doi.org/10.3390/ma12071056

  75. B. Kang, Y. Kim, J. H. Cho, and C. Lee, 2D Materials, 025014 (2017).

  76. K.-C. Lee, S.-H. Yang, Y.-S. Sung, Y.-M. Chang, C.‑Y. Lin, F.-S. Yang, M. Li, K. Watanabe, T. Taniguchi, C.-H. Ho, C.-H. Lien, and Y.-F. Lin, Adv. Funct. Mater, 1809011 (2019).

  77. N. R. Pradhan, C. Garcia, B. Isenberg, D. Rhodes, S. Feng, S. Memaran, Y. Xin, A. McCreary, A. R. H. Walker, A. Raeliarijaona, H. Terrones, M. Terrones, S. McGill, and L. Balicas, Sci. Rep. (2018).

  78. W. Zhang, Z. Huang, W. Zhang, and Y. Li, Nano Res., 7, 1731 (2014).

    Article  Google Scholar 

  79. S. B. Desai, S. R. Madhvapathy, A. B. Sachid, J. P. Llinas, O. Wang, G. H. Ahn, G. Pitner, M. J. Kim, J. Bokor, C. Hu, H.-S. P. Wong, and A. Javey, Science 354 (6308), 99 (2016).

    Article  Google Scholar 

  80. D. Ovchinnikov, F. Gargiulo, A. Allain, D. J. Pasquier, D. Dumcenco, C.-H. Ho, O. V. Yazyev, and A. Kis, Nature Commun. (2016). https://doi.org/10.1038/ncomms12391

  81. Z. Lin, A. McCreary, N. Briggs, S. Subramanian, K. Zhang, Y. Sun, X. Li, N. J. Borys, H. Yuan, S. K. Fullerton-Shirey, A. Chernikov, H. Zhao, S. McDonnell, A. M. Lindenberg, K. Xiao, B. J. LeRoy, M. Drndić, J. C. M. Hwang, J. Park Jiwoong, M. Chowalla, R. E. Schaak, A. Javey, M. C. Hersam, J. Robinson, and M. Terrones, 2D Mater, No. (2016), 3, 042001. https://doi.org/10.1088/2053-1583/3/4/042001

  82. M. Ye, D. Zhang, and Y. K. Yap, Electronics 6 (43), (2017). https://doi.org/10.3390/electronics6020043

  83. W.-W. Xiong, J.-O. Chen, X.-C. Wu, and J.-J. Zhu, J. Mater. Chem. C 2, 7392 (2014).

    Article  Google Scholar 

  84. Y.-R. Tao, J.-J. Wu, and X.-C. Wu, Nanoscale (2015). https://doi.org/10.1039/C5NR03589A

  85. J. O. Island, M. Buscema, M. Barawi, J. M. Clamagirand, J. R. Ares, C. Sánchez, I. J. Ferrer, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Adv. Opt. Mater (2014). https://doi.org/10.1002/adom.201400043

  86. A. Lipatov, P. M. Wilson, M. Shekhirev, J. D. Teeter, R. Netusil, and A. Sinitskii, Nanoscale 7, 12291 (2015).

    Article  Google Scholar 

  87. J. O. Island, M. Barawi, R. Biele, A. Almazan, J. M. Clamagirand, J. R. Ares, C. Sanchez, H. S. J. van der Zant, J. V. Alvarez, R. D’Agosta, I. J. Ferrer, and A. Andres Castellanos-Gomez, Adv. Mater. (2015). https://doi.org/10.1002/adma.201405632

  88. A. J. Molina-Mendoza, J. O. Island, W. S. Paz, J. M. Clamagirand, J. R. Ares, E. Flores, F. Leardini, C. Sanchez, N. Agrait, G. Rubio-Bollinger, H. S. J. van der Zant, I. J. Ferrer, J. J. Palacios, and A. Castellanos-Gomez, Adv. Funct. Mater, 1605647 (2017). https://doi.org/10.1002/adfm.201605647

  89. M. A. Stolyarov, G. Liu, M. A. Bloodgood, E. Aytan, C. Jiang, R. Samnakay, T. T. Salguero, D. L. Nika, S. L. Rumyantsev, M. S. Shur, K. N. Bozhilov, and A. A. Balandin, Nanoscale (2016). https://doi.org/10.1039/c6nr03469a

  90. G. Liu, S. Rumyantsev, M. A. Bloodgood, T. T. Salguero, M. Shur, and A. A. Balandin, Nano Lett. 17, 377 (2017). https://doi.org/10.1021/acs.nanolett.6b04334

    Article  Google Scholar 

  91. J. O. Island, A. J. Molina-Mendoza, M. Barawi, R. Biele, E. Flores, J. M. Clamagirand, J. R. Ares, C. Sanchez, H. S. J. van der Zant, R. D’Agosta, I. J. Ferrer, and A. Castellanos-Gomez, 2D Mater. 4, 022003 (2017). https://doi.org/10.1088/2053-1583/aa6ca6

  92. M. Abdulsalam and D. P. Joubert, Eur. Phys. J. B. 2015. https://doi.org/10.1140/epjb/e2015-60005-x

  93. M. Abdulsalam and D. P. Joubert, Phys. Status Solidi B 253, 868 (2016). https://doi.org/10.1002/pssb.201552705

    Article  Google Scholar 

  94. M. Li, J. Dai, and X. Zeng, Nanoscale 37, 15385 (2015). https://doi.org/10.1039/c5nr04505c

    Article  Google Scholar 

  95. J. Dai and X. C. Zeng, Angew. Chem. Int. Ed. Engl. 54, 7572 (2015). https://doi.org/10.1002/anie.201502107

    Article  Google Scholar 

  96. J. Qiao, X. Kong, Z. -X. Hu, F. Yang, and W. Ji, Nature Commun. (2014). https://doi.org/10.1038/ncomms5475

  97. S. Das, M. Demarteau, and A. Roelofs, ACS Nano (2014). https://doi.org/10.1021/nn505868h

  98. Y. Du, H. Liu, Y. Deng, and P. D. Ye, ACS Nano 8, 10035 (2014). https://doi.org/10.1021/nn502553m

    Article  Google Scholar 

  99. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Nature Nanotechnol., No. 9 (2014). https://doi.org/10.1038/nnano.2014.35

  100. H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye, ACS Nano. (2014). https://doi.org/10.1021/nn501226z

  101. H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S.-J. Han, Nano Lett. (2014). https://doi.org/10.1021/nl5029717

  102. K.-W. Ang, Z.-P. Ling, and J. Zhu, in 2015 IEEE Int. Conf. on Digital Signal Processing (DSP) 2015 (IEEE, New York, 2015). https://doi.org/10.1109/icdsp.2015.7252075

  103. Y. T. Lee, H. Kwon, J. S. Kim, H.-H. Kim, Y. J. Lee, J. A. Lim, Y. -W. Song, Y. Yi, W.-K. Choi, D. K. Hwang, and Im. S. Seongil, ACS Nano (2015). https://doi.org/10.1021/acsnano.5b04592

  104. J. -S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, Sci. Rep. (2015). https://doi.org/10.1038/srep08989

  105. X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus, PNAS Early Edition (2015). https://doi.org/10.1073/pnas.1416581112

  106. K. Xiong, X. Luo, and J. C. M. Hwang, in 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Process for RF and THz Applications (IMWS-AMP), 2015 https://doi.org/10.1109/IMWS-AMP.2015.7324944

  107. W. Zhu, M. N. Yogeesh, S. Yang, S. H. Aldave, J. Kim, S. S. Sonde, L. Tao, N. Lu, and D. Akinwande, Nano Lett. (2015), https://doi.org/10.1021/nl5047329

  108. X. Liu, K.-W. Ang, W. Yu, J. He, X. Feng, Q. Liu, H. Jiang, D. Tang, J. Wen, Y. Lu, W. Liu, P. Cao, S. Han, J. Wu, W. Liu, X. Wang, D. Zhu, and Z. He, Sci. Rep. (2016). https://doi.org/10.1038/srep24920

  109. N. Haratipour and S. J. Koester, IEEE Electron Device Lett. 37 (1), 103 (2016).

    Article  Google Scholar 

  110. L. M. Yang, G. Qiu, M. W. Si, A. R. Charnas, C. A. Milligan, D. Y. Zemlyanov, H. Zhou, Y. C. Du, Y. M. Lin, W. Tsai, Q. Paduano, M. Snure, and P. D. Ye, IEDM Tech. Dig (2016), pp. 5.5.1–5.5.4. https://doi.org/10.1109/IEDM.2016.7838354

  111. Y. Y. Illarionov, M. Waltl, G. Rzepa, T. Knobloch, J.‑S. Kim, D. Akinwande, and T. Grasser, npj 2D Mater. & Appl. (2017), https://doi.org/10.1038/s41699-017-0025-3

  112. M. Si, L. Yang, Y. Du, and P. D. Ye, Proc. Device Res. Conf. (DRC) (2017), pp. 1–2, https://doi.org/10.1109/DRC.2017.7999395

  113. T. Li, Z. Zhang, X. Li, M. Huang, S. Li, S. Li, and Y. Wua, Appl. Phys. Lett., 110, 163507 (2017).

    Article  Google Scholar 

  114. Y. Ma, C. Shen, A. Zhang, L. Chen, Y. Liu, J. Chen, Q. Liu, Z. Li, M. R. Amer, T. Nilges, A. N. Abbas, and C. Zhou, ACS Nano 11, 7126 (2017), https://doi.org/10.1021/acsnano.7b02858

    Article  Google Scholar 

  115. X. Xiong, X. Li, M. Huang, T. Li, T. Gao, and Y. Wu, IEEE Electron Device Lett. 39 (1), 127 (2018).

    Article  Google Scholar 

  116. W. Dickerson, V. Tayari, I. Fakih, A. Korinek, M. Caporali, M. Serrano-Ruiz, M. Peruzzini, S. Heun, G. A. Botton, and T. Szkopek, Appl. Phys. Lett. 112, 173101 (2018).

    Article  Google Scholar 

  117. D. He, Y. Wang, Y. Huang, Y. Shi, X. Wang, and X. Duan, Nano Lett. (2018). https://doi.org/10.1021/acs.nanolett.8b03940

  118. P. Wu, T. Ameen, H. Zhang, L. A. Bendersky, H. Ilatikhameneh, G. Klimeck, R. Rahman, A. V. Davydov, and J. Appenzeller, ACS Nano (2018). https://doi.org/10.1021/acsnano.8b06441

  119. S. Zheng, E. Wu, and H. Zhang, IEEE Trans. on Nanotechnoligy, 17, 590 (2018).

    Article  Google Scholar 

  120. Y. Zheng, Z. Hu, C. Han, R. Guo, D. Xiang, B. Lei, Y. Wang, J. He, M. Lai, and W. Chen, Nano Res. (2018). https://doi.org/10.1007/s12274-018-2246-y

  121. Y. Xia, G. Li, B. Jiang, Z. Yang, X. Liu, X. Xiao, D. Flandre, C. Wang, Y. Liu, and L. Liao, Nanoscale, 11, 10420 (2019), https://doi.org/10.1039/c9nr02907a

    Article  Google Scholar 

  122. B. Xing, L. Guan, Y. Yu, X. Niu, X. Yan, S. Zhang, J. Yao, D. Wang, J. Sha, and Y. Wang, Nanotecnology, 30 (2019), https://doi.org/10.1088/1361-6528/ab1ffe

  123. L. Zhang, L. Y. Shao, G. Gu, T. Wang, X. W. Sun, and X. Chen, Adv. Electron. Mater. 5, 1900133 (2019), https://doi.org/10.1002/aelm.201900133

    Article  Google Scholar 

  124. Y. Wang, P. Huang, M. Ye, R. Quhe, Y. Pan, H. Zhang, H. ShiJ. Zhong, and J. Lu, Chem. Mater., 29, 2191 (2017), https://doi.org/10.1021/acs.chemmater.6b04909

    Article  Google Scholar 

  125. F. Ersan, D. Kecik, V. O. Ozcelik, Y. Kadioglu, U. Akturk, E. Durgun, E. Akturk, and S. Ciraci, Appl. Phys. Rev. 6, 021308 (2019); https://doi.org/10.1063/1.5074087

    Article  Google Scholar 

  126. G. Pizzi, M. Gibertini, E. Dib, N. Marzari, G. Iannaccone, and G. Fiori, Nature Commun. (2016). https://doi.org/10.1038/ncomms12585

  127. S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao, J.GoґMez-Herrero, P. Ares, F. Zamora, Z. Zhu, and H. Zeng, Chem. Soc. Rev. 2017, https://doi.org/10.1039/c7cs00125h

  128. J. Chang, Nanoscale (2018). https://doi.org/10.1039/C8NR03191F

  129. J. Chen, Z. Yang, W. Zhou, H. Zou, M. Li, and F. Ouyang, Phys. Status Solidi RRL 1800038, (2018). https://doi.org/10.1002/pssr.201800038

  130. X. Sun, Z. Song, S. Liu, Y. Wang, Y. Li, W. Wang, and J. Lu, ACS Applied Mater. & Interfaces (2018). https://doi.org/10.1021/acsami.8b03840

  131. H. Zhang, J. Xiong, M. Ye, J. Li, X. Zhang, R. Quhe, Z. Song, J. Yang, Q. Zhang, D. Shi, J. Yan, W. Guo, J. Robertson, Y. Wang, F. Pan, and J. Lu, Phys. Rev. Appl. 11, 064001 (2019).

    Article  Google Scholar 

  132. W. Zhou, J. Chen, P. Bai, S. Guo, S. Zhang, X. Song, L. Tao, and H. Zeng, Research (2019). https://doi.org/10.34133/2019/1046329

  133. M. Zhong, Q. Xia, L. Pan, Y. Liu, Y. Chen, H.‑X. Deng, J. Li, and Z. Wei, Adv. Funct. Mater, 1802581 (2018), 1802581 (2018), https://doi.org/10.1002/adfm.201802581

  134. Z. Yang, Z. Wu, Y. Lyu, and J. Hao, InfoMat 1 (1), 98 (2019). https://doi.org/10.1002/inf2.12001

    Article  Google Scholar 

  135. J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou, Y. Wang, C. Liu, H. Zhong, N. Han, J. Lu, Y. Yao, and K. Wuf, Prog. Mater. Sci., 83, 24 (2016). https://doi.org/10.1016/j.pmatsci.2016.04.001

    Article  Google Scholar 

  136. Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, and J. Lu, Nano Lett. 12113 (2012). https://doi.org/10.1021/nl203065e

  137. M. Vali, D. Dideban, and N. Moezi, J. Comput. Electron (2015). https://doi.org/10.1007/s10825-015-0758-1

  138. L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, and D. Akinwande, Nature Nanotechnol., 10 (2015). https://doi.org/10.1038/nnano.2014.325

  139. R. Quhe, R. Fei1, Q. Liu, J. Zheng, H. Li, C. Xu, Z. Ni, Y. Wang, D. Yu, Z. Gao, and J. Lu, Sci. Rep. (2012). https://doi.org/10.1038/srep00853

  140. F. Pan, Y. Wang, K. Jiang, Z. Ni, J. Ma, J. Zheng, R. Quhe, J. Shi, J. Yang, C. Chen, and J. Lu, Sci. Rep. (2015). https://doi.org/10.1038/srep09075

  141. C. Grazianetti, E. Cinquanta, L. Tao, P. De Padova, C. Quaresima, C. Ottaviani, D. Akinwande, and A. Molle, ACS Nano 11, 3376 (2017). https://doi.org/10.1021/acsnano.7b00762

    Article  Google Scholar 

  142. M. Satta, S. Colonna, R. Flammini, A. Cricenti, and F. Ronci, PRL 115, 026102 (2015), https://doi.org/10.1103/PhysRevLett.115.026102

    Article  Google Scholar 

  143. R.-G. Quhe, Y.-Y. Wang, and J. Lü, Chin. Phys. B 24, 088105 (2015).

    Article  Google Scholar 

  144. I. Gablech, J. Pekarek, J. Klempa, V. Svatos, A. Sagedi-Moghaddam, P. Neuzil, and Pumera, Trends Anal. Chem. (2018). https://doi.org/10.1016/j.trac.2018.05.008

  145. M. Ezawa, E. Salomon, P. De Padova, D. Solonenko, P. Vogt, M. E. D’avila, A. Molle, T. Angot, and G. Le Lay, Rivista del Nuovo Cimento 41 (3), 175 (2018). https://doi.org/10.1393/ncr/i2018-10145-y

  146. A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.‑C. Zhang, and D. Akinwande, Nature Mater. (2017). https://doi.org/10.1038/NMAT4802

  147. H. Li, L. Wang, Q. Liu, J. Zheng, W.-N. Mei, Z. Gao, J. Shi, and J. Lu, Eur. Phys. J. B (2012). https://doi.org/10.1140/epjb/e2012-30220-2

  148. S. Kaneko, H. Tsuchiya, Y. Kamakura, N. Mori, and M. Ogawa, Appl. Phys. Express 7, 035102 (2014). https://doi.org/10.7567/APEX.7.035102

    Article  Google Scholar 

  149. E. G. Marin, D. Marian, G. Iannaccone, and G. Fiori, Nanoscale 9, 19390 (2017). https://doi.org/10.1039/c7nr06015g

    Article  Google Scholar 

  150. X. Li, J. T. Mullen, Z. Jin, K. M. Borysenko, M. B. Nardelli, and K. W. Kim, Phys. Rev. B 87, 115418 (2013). https://doi.org/10.1103/PhysRevB.87.115418

    Article  Google Scholar 

  151. M. E. Davila, L. Xian, S. Cahangirov, A. Rubio, and G. Le Lay, New J. Phys. 16, 095002 (2014). https://doi.org/10.1088/1367-2630/16/9/095002

    Article  Google Scholar 

  152. J. C. Garcia, D. B. de Lima, L. V. C. Assali, and J. F. Justo, J. Phys. Chem. C 115, 13242 (2011).

    Article  Google Scholar 

  153. M. Xu, T. Liang, M. Shi, and H. Chen, Chem. Rev. 113, 3766 (2013).

    Article  Google Scholar 

  154. E. Bianco, S. Butler, S. Jiang, O. D. Restrepo, W. Windl, and J. E. Goldberger, ACS Nano 7 (5), 4414 (2013). https://doi.org/10.1021/nn4009406

    Article  Google Scholar 

  155. H. Zhao, Zhang Chang-Wen, Ji Wei-Xiao, Zhang Run-Wu, Li Sheng-Shi, Yan Shi-Shen, Zhang Bao-Min, Li P., and Wang Pei-Ji, Sci. Rep. (2016). https://doi.org/10.1038/srep20152

  156. M. M. Khatami, G. Gaddemane, M. L. Van de Put, M. V. Fischetti, M. K. Moravvej-Farshi, M. Mahdi Pourfath, and W. G. Vandenberghe, Materials 12, 2935 (2019). https://doi.org/10.3390/ma12182935

    Article  Google Scholar 

  157. Y. Zhao, A. AlMutairi, and Y. Yoon, IEEE Electron Dev. Lett, 38 (12), (2017). https://doi.org/10.1109/LED.2017.2763120

  158. A. AlMutairi, Y. Zhao, D. Yin, and Y. Yoon, IEEE Electron (2017). https://doi.org/10.1109/LED.2017.2681579

  159. M. Brahma, M. Bescond, D. Logoteta, R. K. Ghosh, and S. Mahapatra, IEEE Trans. Electron. Devices, 65 (3), (2018). https://doi.org/10.1109/TED.2017.2788463

  160. B. N. Madhushankar, A. Kaverzin, T. Giousis, G. Potsi, D. Gournis, P. Rudolf, G. R. Blake, C. H. van der Wal, and B. J. van Wees, 2D Mater. 4, 021009 (2017). https://doi.org/10.1088/2053-1583/aa57fd

  161. Bismuth – Containing Alloys and Nanostructures, Eds. S. Wang and P. Lu, Springer Series in Materials Science (Springer Nature, Singapore, 2019), p. 285.

    Google Scholar 

  162. Y. Liu, N. O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, and X. Duan, Nature Rev. Mater. 1 (9), (2016). https://doi.org/10.1038/natrevmats.2016.42

  163. G. Iannaccone, F. Bonaccorso, L. Colombo, and G. Fiori, Nature Nanotechnology (2018). https://doi.org/10.1038/s41565-018-0082-6

  164. C. Dean, A. F. Young, L. Wang, I. Meric, G.-H. Lee, K. Watanabe, T. Taniguchi, K. Shepard, P. Kim, and J. Hone, Solid State Commun. 152, 1275 (2012). https://doi.org/10.1016/j.ssc.2012.04.021

    Article  Google Scholar 

  165. J. M. Wofford, S. Nakhaie, T. Krause, X. Liu, M. Ramsteiner, M. Hanke, H. Riechert, and J. M. J. Lopes. Sci. Rep. (2017). https://doi.org/10.1038/srep43644

  166. Y. Qian, V. H. Ngoc, and D. J. Kang, Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-17432-9

  167. G. Fiori, S. Bruzzone, and G. Iannaccone, IEEE Trans. Electron Dev. 60, 268 (2013). https://doi.org/10.1109/TED.2012.2226464

    Article  Google Scholar 

  168. G. Fiori, A. Betti, S. Bruzzone, P. D’Amico, and G. Iannaccone, IEDM Tech. Dig. 11.4.1–11.4.4 (IEEE, 2011).

    Google Scholar 

  169. G. Fiori, A. Betti, S. Bruzzone, and G. Iannaccone, ACS Nano 6, 2642 (2012). https://doi.org/10.1021/nn300019b

    Article  Google Scholar 

  170. J. S. Moon, Seo Hwa-Chang, F. Stratan, M. Antcliffe, A. Schmitz, R. S. Ross, A. A. Kiselev, V. D. Wheeler, L. O. Nyakiti, D. K. Gaskill, K.-M. Lee, and P. M. Asbeck, IEEE Electron Device Lett. 34, 1190 (2013).

    Article  Google Scholar 

  171. W. Mehr, J. Dabrowski, J. C. Scheytt, G. Lippert, Y.‑H. Xie, M. C. Lemme, M. Ostling, and G. Lupina, IEEE Electron Device Lett. 33, 691 (2012).

    Article  Google Scholar 

  172. S. Vaziri, G. Lupina, C. Henkel, A. D. Smith, M. Östling, J. Dabrowski, G. Lippert, W. Mehr, and M. C. Lemme, Nano Lett. 13, 1435 (2013). https://doi.org/10.1021/nl304305x

    Article  Google Scholar 

  173. H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K.‑E. Byun, P. Kim, Yoo InKyeong, H.-J. Chung, and K. Kim, Science 336, 1140 (2012). https://doi.org/10.1126/science.1220527

    Article  Google Scholar 

  174. A. Horri, R. Faez, M. Pourfath, and G. Darvish, IEEE Trans. Electron Devices (2017). https://doi.org/10.1109/TED.2017.2716938

    Book  Google Scholar 

  175. T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, Nature Nanotechnol. (2012). https://doi.org/10.1038/nnano.2012.224

  176. J. Cao, J. Park, F. Triozon, M. G. Pala, and A. Cresti, ISTE OpenScience (2018). https://doi.org/10.21494/ISTE.OP.2018.0222

  177. S. Netsu, T. Kanazawa, T. Uwanno, T. Amemiya, K. Nagashio, and Y. Miyamoto, IEICE Trans. Electron, E101–C (5), 338 (2018). https://doi.org/10.1587/transele.E101.C.338

    Article  Google Scholar 

  178. M. Long, Y. Wang, P. Wang, X. Zhou, H. Xia, C. Luo, S. Huang, G. Zhang, H. Yan, Z. Fan, X. Wu, X. Chen, W. Lu, and W. Hu, ACS Nano (2019). https://doi.org/10.1021/acsnano.8b09476

  179. Z.-Q. Fan, X.-W. Jiang, J.-W. Luo, L.-Y. Jiao, R. Huang, S.-S. Li, and L.-W. Wang, Phys. Rev. B 96 165402 (2017).

    Article  Google Scholar 

  180. D. Marian, E. Dib, T. Cusati, E. G. Marin, A. Fortunelli, G. Iannaccone, and G. Fiori, Phys. Rev. Appl, 8, 054047 (2017).

    Article  Google Scholar 

  181. Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, ACS Nano 8, 8292 (2014). https://doi.org/10.1021/nn5027388

    Article  Google Scholar 

  182. X. Jiang, X. Shi, M. Zhang, Y. Wang, Z. Gu, L. Chen, H. Zhu, K. Zhang, Q.-Q. Sun, and D. W. Zhang, ACS Applied Nano Materials (2019). https://doi.org/10.1021/acsanm.9b01193

  183. J. Wang, R. Jia, Q. Huang, C. Pan, J. Zhu, H. Wang, C. Chen, Y. Zhang, Y. Yang, H. Song, F. Feng Miao, and R. Huang, Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-35661-4

  184. X. Yan, C. Liu, C. Li, W. Bao, S. Ding, D. W. Zhang, and P. Zhou, Small, 1701478 (2017). https://doi.org/10.1002/smll.201701478

  185. T. Roy, M. Tosun, X. Cao, H. Fang, D.-H. Lien, P. Zhao, Y.-Z. Chen, Y.-L. Chueh, J. Guo, and A. Javey, ACS Nano 2015. https://doi.org/10.1021/nn507278b

  186. Y. Yuan, T. Sun, Z. Hu, W. Yu, W. Ma, K. Zhang, B. Sun, S. P. Lau, Q. Bao, S. Lin, and S. Li, ACS Appl. Mater. & Interfaces (2018). https://doi.org/10.1021/acsami.8b13620

  187. J. Shang, S. Zhang, Y. Wang, H. Wen, and Z. Wei, Chinese Optics Lett. (COL) 17, 020010 (2019). https://doi.org/10.3788/COL201917.020010

    Article  Google Scholar 

  188. J. Na, Y. Kim, J. H. Smet, M. Burghard, and K. Kern, ACS Appl. Mater. & Interfaces, 11, 20973 (2019). https://doi.org/10.1021/acsami.9b02589

    Article  Google Scholar 

  189. M. Fuechsle, G. A. Miwa, S. Mahapatra, H. Ryu, S. Lee, O. Warschkow, L. C. L. Hollenberg, G. Klimeck, and M. Y. Simmons, Nature Nanotechnol. 7, 242 (2012).

    Article  Google Scholar 

  190. V. Deshpande, Scaling Beyond Moore: Single Electron Transistor and Single Atom Transistor. Integration on CMOS. Micro and nanotechnologies/Microelectronics (Univ. de Grenoble, 2012).

    Google Scholar 

  191. H. C. Nguyen, M. Retouty, and G. Lepennetier, arXiv: 1701.05543v1 [cond-mat.mes-hall] (19 Jan. 2017).

  192. F. Xie, A. Peukert, T. Bender, C. Obermair, F. Wertz, P. Schmieder, and T. Schimmel, Adv. Mater., 1801225 (2018). https://doi.org/10.1002/adma.201801225

  193. D. V. Averin and K. K. Likharev, “Single-electronics: Correlated transfer of single electrons and Cooper pairs in small tunnel junctions,” in Mesoscopic Phenomena in Solids, by ed. B. Altshuler, P. Lee, and R. Webb, (Elsevier, Amsterdam, The Netherlands, 1991), pp. 173–271.

  194. E. S. Soldatov, V. V. Khanin, A. S. Trifonov, D. E. Presnov, S. A. Yakovenko, and G. B. Khomutov, JETP Lett. 64 (10), 556 (1996).

    Article  Google Scholar 

  195. L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, Science 320, 356 (2008).

    Article  Google Scholar 

  196. G. Kim, S.-S. Kim, J. Jeon, S. I. Yoon, S. Hong, Y. J. Cho, A. Misra, S. Ozdemir, J. Yin, D. Ghazaryan, M. Holwill, A. Mishchenko, D. V. Andreeva, Y.‑J. Kim, H. Y. Jeong, A-R. Jang, H.-Y. Chung, A. K. Geim, K. S. Novoselov, B.-H. Sohn, and H. S. Shin, Nature Commun. (2019). https://doi.org/10.1038/s41467-018-08227-1

  197. V. Khademhosseini, D. Dideban, M. T. Ahmadi, R. Ismail, and H. Heidari, J. Mater. Sci.: Materials in Electronics (2019). https://doi.org/10.1007/s10854-019-01121-6

  198. V. Khademhosseini, D. Dideban, M. T. Ahmadi, R. Ismail, and H. Heidari, ECS J. Solid State Science and Technol. 7 (10), M145 (2018).

  199. C. Stampfer, E. Schurtenberger, F. Molitor, J. Güttinger, T. Ihn, and K. Ensslin, Nfno Lett. 8, 2378 (2008).

    Article  Google Scholar 

  200. J. Guttinger, F. Molitor, S. Schnez, E. Schurtenberger, A. Jacobsen, S. Hellmüller, T. Frey, S. Dröscher, C. Stampfer, and K. Ensslin, Materials Today 13 (3), 44 (2010).

    Google Scholar 

  201. P. Puczkarski, P. Gehring, C. S. Lau, J. Liu, A. Ardavan, J. H. Warner, G. A. D. Briggs, and J. A. Mol, Appl. Phys. Lett., 107, 133105 (2015).

    Article  Google Scholar 

  202. P. Gehring, J. K. Sowa, J. Cremers, Q. Wu, H. Sadeghi, Y. Sheng, J. H. Warner, C. J. Lambert, G. A. D. Briggs, and J. A. Mol, ACS Nano 11, 5325 (2017).

    Article  Google Scholar 

  203. V. K. Hosseini, D. Dideban, M. T. Ahmadiz, and R. Ismail, Int. J. Modern Phys. B 32 1850235 (2018).

    Article  Google Scholar 

  204. E. J. D. Klem, C. W. Gregory, D. S. Temple, and J. S. Lewis, Proc. SPIE 9555, (2015), https://doi.org/10.1117/12.2190372.4519371145001

  205. S. Hinds, E. Klem, C. Gregory, A. Hilton, G. Hames, and K. Violette, Proc. SPIE, 11407, 1140707-1 (2020).

    Google Scholar 

  206. A.-Y. Lee, H.-S. Ra, D. H. Kwak, M.-H. Jeong, J.‑H. Park, Y.-S. Kang, W.-S. Chae, and J.-S. Lee, ACS Appl. Mater. Interfaces (2018). https://doi.org/10.1021/acsami.8b03285

  207. T. Nakotte, H. Luo, and J. Pietryga, Nanomaterials, 10, 172 (2020). https://doi.org/10.3390/nano10010172

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-20080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Popov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomarenko, V.P., Popov, V.S. & Popov, S.V. 2D Structures Based Field-Effect Transistors (Review). J. Commun. Technol. Electron. 67, 1134–1151 (2022). https://doi.org/10.1134/S1064226922090121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922090121

Keywords:

Navigation