Skip to main content
Log in

Permittivity of Deeply Supercooled Water Based on the Measurements at Frequencies of 7.6 and 9.7 GHz

  • STATISTICAL RADIOPHYSICS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Complex permittivity of supercooled metastable bulk water is measured at temperatures ranging from 0 to –60°C at frequencies of 7.6 and 9.7 GHz. A microwave resonator with cooling of water in the pores of silicate sorbents is used in the experiments. The temperature dependences of the relaxation frequencies are found using the Debye model with two relaxation frequencies for deeply supercooled water. The relaxation frequencies are used to obtain an analytical expression for the complex permittivity of supercooled bulk water in a frequency interval of 7–200 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. B. G. Kutuza, M. V. Danilychev, and O. I. Yakovlev, Satellite Monitoring of the Earth: Microwave Radiometry of Atmosphere and Surface (LENAND, Moscow, 2016) [in Russian].

    Google Scholar 

  2. T. Meissner and F. J. Wentz, IEEE Trans. Geosci. Remote Sens. 42, 1836 (2004).

    Article  Google Scholar 

  3. P. W. Rosenkranz, IEEE Trans. Geosci. Remote Sens. 53, 1387 (2015).

    Article  Google Scholar 

  4. D. D. Turner, S. Kneifel, and M. P. Cadeddu, J. Atmos. Ocean. Technol. 33, 33 (2016).

    Article  Google Scholar 

  5. R. Mottram, S. B. Simonsen, S. H. Svendsen, et al., Remote Sens. 11, 1407 (2019).

    Article  Google Scholar 

  6. D. Ermakov, E. Sharkov, and A. Chernushich, Izv. Akad. Nauk, Izv. Atmosph. Ocean. Phys. 53, 945 (2017).

    Article  Google Scholar 

  7. S. Pogrebenko, L. Gurvits, M. Elitzur, et al., Astron. Astrophys. 494, L1 (2009).

    Article  Google Scholar 

  8. P. S. Ray, Appl. Opt. 11, 1836 (1972).

    Article  Google Scholar 

  9. A. E. Basharinov and B. G. Kutuza, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 17, 52 (1974).

    Google Scholar 

  10. D. Bertolini, M. Cassettari, and G. Salvetti, J. Chem. Phys. 76, 3285 (1982).

    Article  Google Scholar 

  11. S. Kneifel, S. Redl, E. Orlandi, et al., J. Appl. Meteorol. Climatol. 53, 1028 (2014).

    Article  Google Scholar 

  12. C. Ronne, L. Thrane, P.-O. Astrand, et al., J. Chem. Phys. 107, 5319 (1997).

    Article  Google Scholar 

  13. I. Hodge and C. Angell, J. Chem. Phys. 68, 1363 (1978).

    Article  Google Scholar 

  14. H. E. Stanley, S. V. Buldyrev, G. Franzese, et al., Physica A: Statistical Mechanics and its Applications 389, 2880 (2010).

  15. G. S. Bordonskii, A. O. Orlov, and S. D. Krylov, J. Commun. Technol. Electron. 33, 375 (2019).

    Article  Google Scholar 

  16. G. S. Bordonskiy and A. O. Orlov, Preprint arXiv: 1901.03979 [cond-mat.soft] (2019). https://arxiv. org/abs/1901.03979v1.

  17. D. T. Limmer and D. Chandler, J. Chem. Phys. 137, 044509 (2012).

    Article  Google Scholar 

  18. G. S. Bordonskiy and A. O. Orlov, Izv. Akad. Nauk, Izv. Atmosph. Ocean. Phys. 55, 1005 (2019).

    Article  Google Scholar 

  19. W. J. Ellison, J. Chem. Phys. Ref. Data 36 (1), 1 (2007).

    Article  Google Scholar 

  20. L. I. Menshikov, P. L. Menshikov, and P. O. Fedichev, JETP 125, 1173 (2017).

    Article  Google Scholar 

  21. S. R. Castrillon, N. V. Giovambattista, I. A. Arsay, and P. G. Debenedetti, J. Phys. Chem. C 115, 4624 (2011).

    Article  Google Scholar 

  22. E. G. Solveyra, E. Llave, D. A. Scherlis, and V. Molinero, J. Phys. Chem. B 115 (48), 14196 (2011).

    Article  Google Scholar 

  23. P. Gallo, K. Amann-Winkel, C. A. Angell, et al., Chem. Rev. 116 (13), 7463 (2016).

    Article  Google Scholar 

  24. B. Webber, Prog. Nucl. Magn. Reson. Spectrosc. 56 (1), 78 (2010).

    Article  Google Scholar 

  25. C. Mätzler and U. Wegmuller, J. Phys. D: Appl. Phys. 20 (12), 1623 (1987).

    Article  Google Scholar 

  26. V. V. Nikol’skii, Electrodynamics and Propagation of Radio Wave (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  27. N. Wagner, K. Emmerich, F. Bonitz, and K. Kupfer, IEEE Trans. Geosci. Remote Sens. 49, 2518 (2011).

    Article  Google Scholar 

  28. S. M. Korobeynikov, A. V. Melekhov, Yu. G. Soloveitchik, et al., J. Phys. D: Appl. Phys. 38, 915 (2005).

    Article  Google Scholar 

  29. G. S. Bordonskiy and A. O. Orlov, JETP Lett. 105, 492 (2017).

    Article  Google Scholar 

  30. V. Holten, C. E. Bertrand, M. A. Anisimov, and J. V. Sengers, J. Chem. Phys. 136, 094507 (2012).

    Article  Google Scholar 

  31. B. Widom, J. Chem. Phys. 39, 2808 (1963).

    Article  Google Scholar 

  32. F. Mallamace, C. Branca, M. Broccio, et al., Proc. Natl. Acad. Sci. U. S. A. 104, 18387 (2007).

    Article  Google Scholar 

  33. D. Quigley, D. Alfè, and B. Slater, J. Chem. Phys. 141, 161102 (2014).

    Article  Google Scholar 

  34. K. H. Kim, A. Späh, H. Pathak, et al., Science 358 (6370), 1589 (2017).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Bordonskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordonskii, G.S., Gurulev, A.A. & Orlov, A.O. Permittivity of Deeply Supercooled Water Based on the Measurements at Frequencies of 7.6 and 9.7 GHz. J. Commun. Technol. Electron. 67, 249–256 (2022). https://doi.org/10.1134/S1064226922030044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922030044

Navigation