Skip to main content
Log in

Effect of Resonance Responses of Spatially Separated and Independently Electrically Controlled Metastructures with Varactors on Microwave Interferogram of Meta-Interferometer

  • ELECTRODYNAMICS AND WAVE PROPAGATION
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Application of spatially separated and independently electrically controlled from different sources resonant metastructures is proposed for control of a multiband interferogram of a meta-interferometer. Independent control of the frequency and width of the stopband in an interval of 3–6 GHz is demonstrated for the M1 metastructure (that serves as a beam splitter) containing a periodic grating of parallel wires with an orthogonally asymmetrically located copper strip with a break loaded with a varactor and the M2 metastructure (in a shorted h-arm that represents a double-split dipole ring with two varactors. The resonance responses of the metastructures and the dynamics of the interferogram are studied versus the reverse bias voltage across the varactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Y. C. Lin, T. S. Homg, and H. H. Huang, IEEE Trans. Microwave Theory Tech. 62 (12/2), 3351 (2014).

  2. R. Cameron, C. Kudsia, and R. Mansour, Microwave Filters for Communication Systems: Fundamentals, Design, and Applications (Wiley, Hoboken, 2018).

    Book  Google Scholar 

  3. L. Pelliccia, F. Cacciamani, P. Farinelli, and R. Sorrentino, IEEE Trans. Microwave Theory Tech. 63, 3381 (2015).

    Article  Google Scholar 

  4. H. Shin and J. Yoo, Int. J. Precis. Eng. Manufact. 18, 845 (2017).

    Article  Google Scholar 

  5. B. A. Belyaev, A. M. Serzhantov, and V. V. Tyurnev, Tech. Phys. Lett. 38, 839 (2012).

    Article  Google Scholar 

  6. J. Ge and M. P. Fok, Sci. Rep. 5, 15882 (2015).

    Article  Google Scholar 

  7. A. Choudhary, I. Aryantar, S. Shahnia, et al., Opt. Lett. 41, 436 (2016).

    Article  Google Scholar 

  8. Q. Liu, J. Ge, and M. P. Fok, Opt. Lett. 43, 5685 (2018).

    Article  Google Scholar 

  9. Chaudhary Girdhari, Jeong Yongchae, and Lim Jongsik, IEEE Trans. Microwave Theory Tech. 61, 107 (2013).

    Article  Google Scholar 

  10. Xiu Yin Zhang, Li Gao, Yunfei Cao et al., Prog. in Electromag. Res. C 42, 55 (2013).

    Google Scholar 

  11. A. Mahmoud, S. Soulimane, R. Plana, et al., Microwave Opt. Technol. Lett. 51, 1336 (2009).

    Article  Google Scholar 

  12. K. Entesari and G. M. Rebeiz, IEEE Trans. Microwave Theory Tech. 53, 1103 (2005).

    Article  Google Scholar 

  13. A. R. Brown and G. M. Rebeiz, IEEE Trans. Microwave Theory Tech. 48, 1157 (2000).

    Article  Google Scholar 

  14. K. A. Jose, V. K. Varadan, and V. V. Varadan, Microwave Opt. Technol. Lett. 20, 166 (1999).

    Article  Google Scholar 

  15. G. Srinivasan, A. S. Tatarenko, and M. I. Bichurin, Electron. Lett. 41, 596 (2005).

    Article  Google Scholar 

  16. O. G. Vendik, Phys. Solid State 51, 1529 (2009).

    Article  Google Scholar 

  17. Su. Hieng-Tiong, P. M. Suherman, T. J. Jackson, et al., IEEE Trans. Microwave Theory Tech. 56, 2468 (2008).

    Article  Google Scholar 

  18. B. A. Kapilevich, Microwave J. 50, 106 (2007).

    Google Scholar 

  19. Y. Yamamoto and S. A. Mikumo, IEICE Electronics Express 2 (3), 86 (2005).

    Article  Google Scholar 

  20. A. Alphones, Microwave Opt. Technol. Lett. 18 (1), 41 (1998).

    Article  Google Scholar 

  21. S. Lee, Y. Kuga, and R. A. Mullen, Microwave Opt. Technol. Lett. 27 (1), 9 (2000).

    Article  Google Scholar 

  22. M. L. Kulygin, G. G. Denisov, and Yu. V. Rodin, Tech. Phys. Lett. 37, 368 (2011).

    Article  Google Scholar 

  23. G. A. Kraftmakher, V. S. Butylkin, Yu. N. Kazantsev, et al., Appl. Phys. A 123 (1), 56 (2017). https://doi.org/10.1007/s00339-016-0687-2

    Article  Google Scholar 

  24. S. A. Malyshev, B. A. Galwas, J. Piotrowski, et al., IEEE Microwave and Wireless Components Lett. 12, 201 (2002).

    Article  Google Scholar 

  25. S. A. Malyshev and A. L. Chizh, IEEE J. Selected Topics Quant. Electron. 10, 679 (2004).

    Article  Google Scholar 

  26. V. A. Vlasenko, S. N. Belyaev, A. G. Efimov, et al., Tech. Phys. Lett. 35, 737 (2009).

    Article  Google Scholar 

  27. Su Hieng-Tiong, P. M. Suherman, T. J. Jackson, et al., IEEE Trans. Microwave Theory Tech. 56, 2468 (2008).

    Article  Google Scholar 

  28. V. Butylkin, Yu. Kazantsev, G. Kraftmakher, and V. Mal’tsev, Appl. Phys. A 123 (1), 57 (2017).

    Article  Google Scholar 

  29. G. A. Kraftmakher, V. S. Butylkin, Yu. N. Kazantsev, and V. P. Mal’tsev, JETP Lett. 10, 232 (2019).

    Article  Google Scholar 

  30. G. A. Kraftmakher, V. S. Butylkin, Yu. N. Kazantsev, and V. P. Mal’tsev, J. Commun. Technol. Electron. 64, 1179 (2019).

    Article  Google Scholar 

  31. G. A. Kraftmakher, V. S. Butylkin, Yu. N. Kazantsev, V. P. Mal’tsev, and I. P. Nikitin, J. Commun. Technol. Electron. 66, 1 (2021).

    Article  Google Scholar 

  32. G. A. Kraftmakher, V. S. Butylkin, Yu. N. Kazantsev, V. P. Mal’tsev, and I. P. Nikitin, J. Commun. Technol. Electron. 66, 101 (2021).

    Article  Google Scholar 

  33. G. A. Kraftmakher, V. S. Butylkin, Yu. N. Kazantsev, and V. P. Mal’tsev, Electron. Lett. 53, 1264 (2017).

    Article  Google Scholar 

Download references

Funding

This work was supported by the State Contract no. 0030-2019-0014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Kraftmakher.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraftmakher, G.A., Butylkin, V.S., Kazantsev, Y.N. et al. Effect of Resonance Responses of Spatially Separated and Independently Electrically Controlled Metastructures with Varactors on Microwave Interferogram of Meta-Interferometer. J. Commun. Technol. Electron. 66, 1307–1314 (2021). https://doi.org/10.1134/S1064226921120147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226921120147

Navigation