Skip to main content
Log in

Graphene Structures-Based 2D Nanotransistors (Review)

  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The structure and main parameters of field-effect transistors (FETs) based on gapless graphene (Gr) and its derivatives with semiconducting properties, transistors on flexible substrates, tunneling transistors (TFETs) based on graphene mono- and bilayers, and transistors based on graphene nanoribbons are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. V. P. Ponomarenko, Quantum Photosensorics (Orion R&P Association, Moscow, 2018) [in Russian].

    Google Scholar 

  2. Carbon Nanotubes and Graphene for Photonic Applications, Eds. by S. Yamashita, Y. Saita, and J. H. Choi (WP Publishing, Oxford, Cambridge, Philadelphia, New York, 2013).

  3. Graphene Optoelectronics. Synthesis, Characterization, Properties, and Applications, Ed. by A. Rashid bin Mohd Yusoff (Wiley-VCH, Weinheim, Germany, 2014).

  4. SerhiiShafraniuk, Graphene. Fundamentals, Devices, and Applications (Pan Stanford Publishing, 2015).

    Book  Google Scholar 

  5. Carbon Nanomaterials Sourcebook, Ed. K. D. Sattler (CRC Press, Boen Raton, London, New York, 2016), Vol. 2.

  6. 2D Materials for Nanoelectronics, Eds. M. Houssa, A. Dimoulas, and A. Molle (CRC Press, Boen Raton, London, New York, 2016).

  7. Two-Dimensional Materials - Synthesis, Characterization and Potential Applications, Ed. P. K. Nayak (in Tech, Croatia, 2016).

  8. Graphene Photonics, Optoelectronics, and Plasmonics, Eds. Q. Bao, H.Y. Hoh, and Y. Zhang (Pan Stanford Publishing, Singapore, 2017).

    MATH  Google Scholar 

  9. Guo Nan, Infrared Photodetectors Based on Low-Dimensional Materials (Springer Nature, Singapore, Beijing, China, 2018).

  10. L. W. Ng, G. Hu, R. C. T. Howe, X. Zhu, Z. Yang, C. G. Jones, and T. Hasan, Printing of Graphene and Related 2D Materials (Springer-Verlag, Switzerland, 2019).

    Book  Google Scholar 

  11. V. P. Ponomarenko, V. S. Popov, S. V. Popov, and E. L. Chepurnov, J. Commun. Technol. Electron. 65, 1062–1104 (2020).

  12. “New international route chart of development of semiconductor devices,” Zarubezh. Elektron. Tekh. 8 (6631), 4–9 (2017).

  13. “Technology development prospects for leading logic suppliers and silicon plants,” Zarubezh. Elektron. Tekh. 6 (6680), 16–19 (2019).

  14. F. Schwierz, Proc. IEEE 101, 1567 (2013).

    Article  Google Scholar 

  15. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  16. M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurtz, IEEE Electron Device Lett. 28, 282 (2007).

    Article  Google Scholar 

  17. I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Nature Nanotechnol. (2008). https://doi.org/10.1038/nnano.2008.268

  18. I. Meric, N. Baklitskaya, P. Kim, and K. L. Shepard, in IEEE Int. Electron Devices Meeting (IEDM, 2008). https://doi.org/10.1109/IEDM.2008.4796738

  19. I. Meric, C. R. Dean, A. F. Young, J. Hone, P. Kim, and K. L. Shepard, in IEEE Int. Electron Devices Meeting (IEDM, 2010). https://doi.org/10.1109/IEDM.2010.5703419

  20. J. Kedzierski, P.-L. Hsu, P. Healey, P. W. Wyatt, C. L. Keast, M. Sprinkle, C. Berger, and W. A. de Heer, IEEE Trans. Electron Devices, 55, 2078 (2008).

    Article  Google Scholar 

  21. M. I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge Univ., New York, 2012).

    Book  Google Scholar 

  22. K. S. Novoselov, Phys. Usp. 54, 1227 (2011).

    Article  Google Scholar 

  23. F. Giannazzo, G. Greco, F. Roccaforte, and S. S. Sonde, Crystals 8, 70 (2018). https://doi.org/10.3390/cryst8020070

    Article  Google Scholar 

  24. F. Schwierz, H. Wong, and J. J. Liou, Nanometer CMOS (Pan Stanford, Singapore, 2010).

    Book  Google Scholar 

  25. P. Wolf, IBM J. Res. Develop. 14, 125 (1970).

    Article  Google Scholar 

  26. P. J. Tasker and B. Hughes, IEEE Electron Device Lett. 10, 291 (1989).

    Article  Google Scholar 

  27. Y. Wu, K. A. Jenkins, A. Valdes-Garcia, D. B. Farmer, Y. Zhu, A. A. Bol, C. Dimitrakopoulos, W. Zhu, F. Xia, P. Avouris, and Y.-M. Lin, Nano Lett. 12, 3062 (2012).

    Article  Google Scholar 

  28. J. S. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P. M. Campbell, G. Jernigan, J. L. Tedesco, B. Van Mil, R. Myers-Ward, C. Eddy, Jr., and D. K. Gaskill, IEEE Electron. Devices Lett. 30, 650 (2009).

    Article  Google Scholar 

  29. Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, Ph. Avouris Sci. 327, 662 (2010)

    Google Scholar 

  30. S.-J. Han, S. Oida, K. A. Jenkins, D. Lu, and Y. Zhu, IEEE Electron. Device Lett. 34, 1340 (2013).

    Article  Google Scholar 

  31. Z. Guo, R. Dong, P. S. Chakraborty, N. Lourenco, J. Palmer, Y. Hu, M. Ruan, J. Hankinson, J. Kunc, J. D. Cressler, C. Berger, W. A. De Heer, Nano Lett. 13, 942 (2013).

    Article  Google Scholar 

  32. Z. H. Feng, C. Yu, J. Li, Q. B. Liu, Z. Z. He, X. B. Song, J. J. Wang, and S. J. Cai, Carbon, 75, 249 (2014).

    Article  Google Scholar 

  33. Y. Wu, X. Zou, M. Sun, Z. Cao, X. Wang, S. Huo, J. Zhou, Y. Yang, X. Yu, Y. Kong, G. Yu, L. Liao, and T. Chen, ACS Appl. Mater. Interfaces 8, 25645 (2016).

    Article  Google Scholar 

  34. R. Cheng, J. Bai, L. Liao, H. Zhou, Y. Chen, L. Liu, Y.-C. Lin, S. Jiang, Y. Huang, and X. Duan, Proc. Nat. Acad. Sci. U.S.A. 109 (29), 11588–92 (2012).

    Article  Google Scholar 

  35. L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, R. L. Wang, Y. Huang, and X. Duan, Nature 467, 305 (2010).

    Article  Google Scholar 

  36. R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005).

    Article  Google Scholar 

  37. M. Knez, K. Nielsch, and L. Niinistö, Adv. Mater. 19, 3425 (2007).

    Article  Google Scholar 

  38. S. M. George, Chem. Rev. 110, 111 (2010).

    Article  Google Scholar 

  39. Ananth Dodabalapur, Mater. Today 9 (4), 24 (2006).

    Article  Google Scholar 

  40. J. Lee, L. Tao, Y. Hao, R. S. Ruoff, and D. Akinwande, Appl. Phys. Lett. 100, 152104 (2012).

    Article  Google Scholar 

  41. N. Petrone, I. Meric, J. Hone, and K. L. Shepard, Nano Lett. 13 (1), 121 (2013), https://doi.org/10.1021/nl303666m

    Article  Google Scholar 

  42. I. Meric, N. Petrone, J. Hone, and K. L. Shepard, IEEE MTT-S Int. Microwave Symp. Digest (2013). https://doi.org/10.1109/MWSYM.2013.6697801

  43. N. Petrone, I. Meric, T. Chari, K. L. Shepard, and J. Hone, J. Electron Devices Soc. 3, 44 (2015).

    Article  Google Scholar 

  44. L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, Science 342, 614 (2013).

    Article  Google Scholar 

  45. T. Chari, I. Meric, C. Dean, and K. Shepard, IEEE Trans. Electron Devices (2015). https://doi.org/10.1109/TED.2015.2482823

    Book  Google Scholar 

  46. C.-H. Yeh, Y.-W. Lain, Y.-C. Chiu, C.-H. Liao, D. R. Moyano, S. S. H. Hsu, and P.-W. G. Chiu, ACS Nano 8, 7663 (2014).

    Article  Google Scholar 

  47. E. Guerriero, P. Pedrinazzi, A. Mansouri, O. Habibpour, M. Winters, N. Rorsman, A. Behnam, E. A. Carrion, A. Pesquera, A. Centeno, A. Zurutuza, E. Pop, H. Zirath, and R. Sordan, Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-02541-2

  48. F. Schwierz, J. Pezoldt, and R. Granzner, Nanoscale (2015). https://doi.org/10.1039/C5NR01052G

  49. P. B. Sorokin and L. A. Chernozatonskii, Usp. Fiz. Nauk 183, 113 (2013).

    Article  Google Scholar 

  50. Neto A. H. Castro, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Modern Phys. 81, 109 (2009).

    Article  Google Scholar 

  51. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Science 335, 947 (2012).

    Article  Google Scholar 

  52. D. Svintsov, V. Vyurkov, V. Lukichev, A. Orlikovsky, A. Burenkov, and R. Oechsner, Semiconductors 47, 279 (2013),

    Article  Google Scholar 

  53. G. Fiori and G. Iannaccone, IEEE Electron. Dev. Lett. 30, 261 (2009).

    Article  Google Scholar 

  54. G. Fiori and G. Iannaccone, IEEE Electron. Dev. Lett. 30, 1096 (2009).

    Article  Google Scholar 

  55. V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, and N. Kirova, J. Appl. Phys. 105, 104510 (2009).

    Article  Google Scholar 

  56. D. Svintsov, V. Vyurkov, V. Ryzhii, and T. Otsuji, Jpn. J. Appl. Phys. 50, 070112 (2011).

    Article  Google Scholar 

  57. G. Alymov, V. Vyurkov, V. Ryzhii, and D. Svintsov, Sci. Rep. (2016). https://doi.org/10.1038/srep24654

  58. M.-S. Chae, T. H. Lee, K. R. Son, Y. W. Kim, K. S. Hwangb, and T. G. Kima, Nanoscale Horiz. (2013). https://doi.org/10.1039/C8NH00374B

  59. H. Ilatikhameneh, G. Klimeck, J. Appenzeller, and R. Rahman, IEEE Electron. Dev. Lett. 36, 726 (2015).

    Article  Google Scholar 

  60. A. Lahgere, C. Sahu, and J. Singh, Electron. Lett. 51 (16), 1284 (2015).

    Article  Google Scholar 

  61. K. Nigam, S. Pandey, P. Kondekar, D. Sharma, M. Verma, and A. Gedam, Micro & Nano Lett. 12, 239 (2017).

    Article  Google Scholar 

  62. M. Abedini, S. A. S. Ziabari, and A. Eskandarian, Int. Nano Lett. (2018). https://doi.org/10.1007/s40089-018-0250-6

  63. W. Xu and T.-W. Lee, Mater. Horiz. 3, 186 (2016).

    Article  Google Scholar 

  64. Z. Geng, B. Hëahnlein, R. Granzner, M. Auge, A. A. Lebedev, V. Y. Davydov, M. Kittler, J. Pezoldt, and F. Schwierz, Ann. Phys. (Berlin), 1700 (2017).https://doi.org/10.1002/andp.201700033

  65. J. Bai, X. Duan, and Y. Huang, Nano Lett. 9 (5), 2083 (2009).

    Article  Google Scholar 

  66. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science, 319, 1229 (2008).

    Article  Google Scholar 

  67. J. P. Llinas, A. Fairbrother, G. B. Barin, W. Shi, K. Lee, S. Wu, B. Y. Choi, R. Braganza, J. Lear, N. Kau, W. Choi, ChenC. Chen, Z. Pedramrazi, T. Dumslaff, A. Narita, X. Feng, K. Müllen, F. Fischer, A. Zettl, P. Ruffieux, E. Yablonovitch, M. Crommie, R. Fasel, and J. Bokor, Nature Commun., (2017). https://doi.org/10.1038/s41467-017-00734-x

  68. W. S. Hwang, K. Tahy, and X. Li, Huili (Grace) Xing, A. C. Seabaugh, C. Y. Sung, D. Jena, Appl. Phys. Lett. 100, 203107 (2012).

    Article  Google Scholar 

  69. P. B. Bennett, Z. Pedramrazi, A. Madani, Y.-C. Chen, D. G. de Oteyza, C. Chen, F. R. Fischer, M. F. Crommie, and J. Bokor, Appl. Phys. Lett. 103, 253114 (2013).

    Article  Google Scholar 

  70. D. Mele, S. Mehdhbi, D. Fadil, W. Wei, A. Ouerghi, S. Lepilliet, H. Happy, and E. Pallecchi, Electron. Mater. Lett. (2018). https://doi.org/10.1007/s13391-018-0038-x

  71. Z. Chen, Y.-M. Lin, M. J. Rooks, and P. Avouris, Physica E 40, 228 (2007).

    Article  Google Scholar 

  72. Xinran. Wang, Y. Ouyang, X. Li, Wang Hailiang, J. Guo, and H. Dai, Phys. Rev. Lett. 100, 206803 (2008).

  73. S.-J. Jeong, S. Jo, J. Lee, K. Yang, H. Lee, C.-S. Lee, H. Park, and S. Park, Nano Lett. (2016). https://doi.org/10.1021/acs.nanolett.6b01542

  74. M. Gholipour, N. Masoumi, Chen Ying-Yu (Christine), D. Chen, and M. Pourfath, IEEE Trans. Electron. Dev. (2014). https://doi.org/10.1109/TED.2014.2362774

  75. Y. Khatami, J. Kang, and K. Banerjee, Appl. Phys. Lett. 102, 043114 (2013).

    Article  Google Scholar 

  76. Y. M. Banadaki and A. Srivatsava, in Proc. IEEE 56th Int. Midwest Symp. on Circuits and Systems,Columbus, Ohio, USA, Aug.4–7, 2013 (IEEE, New York, 2013), pp. 924–927. https://doi.org/10.1109/mwscas.2013.6674801

  77. M. Ghadiry, H. Ahmad, C. W. Yi, and A. A. Manaf, Mater. Express, 6, 265 (2016).

    Article  Google Scholar 

  78. M. Fuechsle, G. A. Miwa, S. Mahapatra, H. Ryu, S. Lee, O. Warschkow, L. C. L. Hollenberg, G. Klimeck, and M. Y. Simmons, Nature Nanotechnol. 7, 242 (2012).

    Article  Google Scholar 

  79. V. Deshpande, Scaling Beyond Moore: Single Electron Transistor and Single Atom Transistor. Integration on CMOS. Micro and Nanotechnologies/Microelectronics (Univ. de Grenoble, 2012).

    Google Scholar 

  80. H. C. Nguyen, M. Retouty, and G. Lepennetier, arXiv: 1701.05543v1 [cond-mat.mes-hall] (19 Jan. 2017).

  81. F. Xie, A. Peukert, T. Bender, C. Obermair, F. Wertz, P. Schmieder, and T. Schimmel, Adv. Mater., 180, 1225 (2018). https://doi.org/10.1002/adma.201801225

  82. D. V. Averin and K. K. Likharev, “Single-electronics: Correlated transfer of single electrons and Cooper pairs in small tunnel junctions,” in Mesoscopic Phenomena in Solids, Eds. B. Altshuler, P. Lee, and R. Webb (Elsevier, Amsterdam, The Netherlands, 1991), pp. 173–271.

    Google Scholar 

  83. E. S. Soldatov, V. V. Khanin, A. S. Trifonov, D. E. Presnov, S. A. Yakovenko, and G. B. Khomutov, JETP Lett. 64, 556 (1996).

    Article  Google Scholar 

  84. L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, A. K. Geim, Science 320, 356 (2008).

    Article  Google Scholar 

  85. G. Kim, S.-S. Kim, J. Jeon, S. I. Yoon, S. Hong, Y. J. Cho, A. Misra, S. Ozdemir, J. Yin, D. Ghazaryan, M. Holwill, A. Mishchenko, D. V. Andreeva, Y.‑J. Kim, H. Y. Jeong, A-R. Jang, H.-Y. Chung, A. K. Geim, K. S. Novoselov, B.-H. Sohn, and H. S. Shin, Nature Commun. 1038 (2019). https://doi.org/10.1038/s41467-018-08227-1

  86. V. Khademhosseini, D. Dideban, M. T. Ahmadi, R. Ismail, and H. Heidari, J. Mater. Sci.: Mater. in Electron. (2019). https://doi.org/10.1007/s10854-019-01121-6

  87. V. Khademhosseini, D. Dideban, M. T. Ahmadi, R. Ismail, and H. Heidari, ECS J. Solid State Sci. & Technol. 7 (10), M145 (2018).

    Article  Google Scholar 

  88. C. Stampfer, E. Schurtenberger, F. Molitor, J. Güttinger, T. Ihn, and K. Ensslin, Nano Lett. 8, 2378 (2008).

    Article  Google Scholar 

  89. T. Ihn, J. Güttinger, F. Molitor, S. Schnez, E. Schurtenberger, A. Jacobsen, S. Hellmüller, T. Frey, S. Dröscher, C. Stampfer, and K. Ensslin, Materials Today, 13 (3), 44 (2010).

    Article  Google Scholar 

  90. P. Puczkarski, P. Gehring, C. S. Lau, J. Liu, A. Ardavan, J. H. Warner, G. A. D. Briggs, and J. A. Mol, Appl. Phys. Lett. 107 133105 (2015).

    Article  Google Scholar 

  91. P. Gehring, J. K. Sowa, J. Cremers, Q. Wu, H. Sadeghi, Y. Sheng, J. H. Warner, C. J. Lambert, G. A. D. Briggs, and J. A. Mol, ACS Nano 11, 5325 (2017).

    Article  Google Scholar 

  92. V. K. Hosseini, D. Dideban, M. T. Ahmadiz, and R. Ismail, Int. J. Modern Phys. B 32, 1850235 (2018).

    Article  Google Scholar 

  93. J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153401 (2007).

    Article  Google Scholar 

  94. S. Lebègue, M. Klintenberg, O. Eriksson, and M. I. Katsnelson, Phys. Rev. B 79, 245117 (2009).

    Article  Google Scholar 

  95. M. Klintenberg, S. Lebegue, M. I. Katsnelson, and O. Eriksson, Phys. Rev. B 81, 085433 (2010).

    Article  Google Scholar 

  96. F. Karlický and M. Otyepka, J. Chem. Theory Comput. 9, 4155 (2013).

    Article  Google Scholar 

  97. H. Sahin, O. Leenaerts, S. K. Singh, and F. M. Peeters, GraphAne: From Synthesis to Applications (arXiv: 1502.05804v1 [cond-mat.mtrl-sci], 2015).

  98. R. Majidi, JMNS (J. Math. NanoSci.), 4 (1-2), 11 (2015).

  99. J. Son, S. Lee, S. J. Kim, B. C. Park, H.-K. Lee, S. Kim, J. H. Kim, B. H. Hong, and J. Hong, Nature Commun. (2016). https://doi.org/10.1038/ncomms13261

  100. X. Hou, Z. Xie, C. Li, G. Li, and Z. Chen, Materials (2018). https://doi.org/10.3390/ma11020188

  101. Y. Liu, M. Bo, C. Q. Sun, and Y. Huang, Nanomaterials (2018). https://doi.org/10.3390/nano8020092

  102. Q. Peng, A. K. Dearden, J. Crean, Han L. Liang, S. Liu, X. Wen, and S. De, Nanotechnol., Sci. and Appl. (2014). https://doi.org/10.2147/NSA.S40324

  103. M. Lundie, Z. Sljivancanin, and S. Tomi, J. Physics: Conf. Ser. 526, 012003 (2014). https://doi.org/10.1088/1742-6596/526/1/012003

    Article  Google Scholar 

  104. H. Einollahzadeh, S. M. Fazeli, and R. S. Dariani, Sci. & Technol. Adv. Mater. 17, 610 (2016).

    Article  Google Scholar 

  105. R. Vargas-Bernal, in Two-Dimensional Materials—Synthesis, Characterization and Potential Applications. Chap. 6, Ed. P. K. Nayak (Tech, Croatia, 2016).

    Google Scholar 

  106. M. V. Kondrin and V. V. Brazhkin, Nanosyst.: Phys., Chem., Math. 7 (1), 44 (2016).

    Google Scholar 

  107. Y. S. Nechaev and N. Veziroglu, Open Fuel Cells J., No. 6, 21 (2013).

  108. L. Di, Y. Yu-Rong, X. Yang, and Z. Xiao-Yu, Chin. Phys. 20, 118101 (2011).

    Article  Google Scholar 

  109. D. A. Solis, D. D. Borges, C. F. Woellner, and D. S. Galvão, ACS Appl. Mater. Interfaces (2018). https://doi.org/10.1021/acsami.8b03481

  110. G. Fiori, S. Lebègue, A. Betti, P. Michetti, M. Klintenberg, O. Eriksson, and G. Iannaccone, Phys. Rev. B 82 (2010), 153404.

    Article  Google Scholar 

  111. B. Gharekhanlou, S. B. Tousaki, and S. Khorasani, J. Phys.: Conf. Ser. 248, 012061 (2010).

    Google Scholar 

  112. Liang-feng Huang and Z. Zeng, Front. Phys. 7, 324 (2012). https://doi.org/10.1007/s11467-011-0239-3

    Article  Google Scholar 

  113. K.-I. Ho, C.-H. Huang, J.-H. Liao, W. Zhang, L.‑J. Li, C.-S. Chao-Sung Lai, and C.-Y. Su, Sci. Rep. (2014). https://doi.org/10.1038/srep05893

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-20080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Popov.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomarenko, V.P., Popov, V.S. & Popov, S.V. Graphene Structures-Based 2D Nanotransistors (Review). J. Commun. Technol. Electron. 66, 1108–1122 (2021). https://doi.org/10.1134/S1064226921090138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226921090138

Keywords:

Navigation