Skip to main content
Log in

Using the Method of Base Components for a Heuristic Solution to the Diffraction Problem on a Half-Plane with Nonideal Boundary Conditions

  • ELECTRODYNAMICS AND WAVE PROPAGATION
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract—Using the method of base components, a heuristic solution to the diffraction problem on a semitransparent half-plane has been determined. The heuristic formulas have been verified via numerical solution. We have a semitransparency function for describing the transformation of the heuristic formulas upon variation in the transparency parameter of a scatterer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. Analytical expressions (14) for coefficients R and T that correspond to boundary conditions (12) and the results of the numerical calculation of the strict solution (we denote this with fr(R, T, φ, φ0)) were presented by Bankov in [14]. The numerical solution is based upon the Wiener–Hopf method in [15, 16] and has the form of a singular diffraction coefficient (as in (10) or (11)).

REFERENCES

  1. H. Hönl, A. W. Maue, and K. Westpfahl, Handbuch der Physik, Ed. by S. Flügge (Springer, Berlin, 1961; Mir, Moscow, 1964), vol. 25/1, p. 218.

  2. Y. A. Kravtsov and Zhu Ning Yan, Theory of Diffraction: Heuristic Approaches (Alpha Science Int., Oxford, 2010).

    Google Scholar 

  3. M. V. Vesnik, The Method of the Generalized Eikonal. New Approaches in the Diffraction Theory (Walter de Gruyter, Berlin, 2015).

    MATH  Google Scholar 

  4. J. B. Keller, J. Optical Soc. Am. 52, 116 (1962).

    Article  Google Scholar 

  5. V. A. Borovikov and B. E. Kinber, Geometric Theory of Diffraction (Svyaz’, Moscow, 1978) [in Russian].

    MATH  Google Scholar 

  6. P. Ya. Ufimtsev, Method of Edge Waves in the Physical Theory of Diffraction (Sovetskoe Radio, Moscow, 1962; US Air Force Foreign Technology Division, 1-1154, 1962).

  7. M. V. Vesnik, Sovr. Mat. Fundam. Napr. (SMFN) 6, 32 (2016).

    Google Scholar 

  8. M. V. Vesnik, in Proc. VI All-Russian Microwave Conf., Moscow, Nov. 28–30,2018 (IRE im. B.A. Kotel’nikova, Moscow, 2018), p. 189.

  9. M. V. Vesnik, Proc. Int. Conf. Days on Diffraction, St. Petersburg, May 27–31,2013 (IEEE, New York, 2013), p. 89.

  10. M. V. Vesnik and P. Y. Ufimtsev, in Proc. Program and Abstracts North American Radio Science Meeting, URSI, London, Ontario, Canada,1991 (URSI, 1991), p. 176.

  11. M. V. Vesnik and P. Y. Ufimtsev, Electromagnetics 12, 265 (1992).

    Article  Google Scholar 

  12. M. V. Vesnik, Proc. 1995 Int. Symp. on Electromagnetic Theory, St. Petersburg, Russia, May 23–26,1995 (St. Peterburg. Univ., St. Petersburg, 1995), p. 407.

  13. N. N. Voitovich, B. Z. Katsenelenbaum, E. N. Korshunova, et al.,Electromagnetics of Antennas with Semi-transparent Surfaces. A Method of Constructive Synthesis, (Nauka, Moscow, 1989).

    Google Scholar 

  14. S. E. Bankov, Integrated Microwave Optics (Fizmatlit, Moscow, 2018).

    Google Scholar 

  15. B. Noble, Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations (Pergamon Press, Oxford, 1958; Inostrannaya Literatura, Moscow, 1962).

  16. E. I. Nefedov, Diffraction of Electromagnetic Waves on Dielectric Structures (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  17. M. V. Vesnik, IEEE Trans. Antennas Propag. 49, 1638 (2001).

    Article  Google Scholar 

  18. M. V. Vesnik, J. Commun. Technol. Electron. 59, 496 (2014).

    Article  Google Scholar 

  19. M. V. Vesnik, Radio Sci. 49, 945 (2014).

    Article  Google Scholar 

  20. M. V. Vesnik, in Radar-Location and Communication—Perspective Technologies (Proc. XIII Youth Sci.-Tech. Conf., Moscow, Dec. 3,2015), p. 80.

  21. C. V. Raman and K. S. Krishnan, Proc. Rou Soc. Lond. A 116, 254 (1927).

    Article  Google Scholar 

  22. J. Shmoys, IRE Trans. Antennas Propag. 7, 88 (1959).

    Article  Google Scholar 

  23. W. D. Burnside and K. W. Burgener, IEEE Trans. Antennas Propag. 31, 104 (1983).

    Article  Google Scholar 

  24. R. J. Luebbers, IEEE Trans. Antennas Propag. 32, 70 (1984).

    Article  Google Scholar 

  25. P. Ya. Ufimtsev, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 11, 912 (1968).

    Google Scholar 

  26. V. A. Kaloshin and K. K. Klionovski, J. Commun. Technol. Electron. 60, 1062 (2015).

    Article  Google Scholar 

  27. V. V. Akhiyarov and V. A. Kaloshin, in Proc. III All-Russian Microwave Conf., Moscow, Nov. 25–27,2015 (IRE im. V.A. Kotel’nikova RAN, Moscow, 2015), p. 346.

  28. M. V. Vesnik, in Proc. III All-Russian Microwave Conf., Moscow, Nov. 25–27,2015 (IRE im. V. A. Kotel’nikova RAN, Moscow, 2015), p. 281.

  29. M. V. Vesnik, in Proc. III All-Russian Microwave Conf., Moscow, Nov. 25–27,2015 (IRE im. V. A. Kotel’nikova RAN, Moscow, 2015), p. 332.

  30. H. M. El-Sallabi, I. T. Rekanos, and P. Vainikainen, IEEE Antennas and Wireless Propagation Lett. 1, 165 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Vesnik.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vesnik, M.V. Using the Method of Base Components for a Heuristic Solution to the Diffraction Problem on a Half-Plane with Nonideal Boundary Conditions. J. Commun. Technol. Electron. 64, 1211–1217 (2019). https://doi.org/10.1134/S106422691911024X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422691911024X

Navigation