Skip to main content
Log in

On the Potential Application of Direct Digital Synthesis in the Development of Frequency Synthesizers for Quantum Frequency Standards

  • THEORY AND METHODS OF SIGNAL PROCESSING
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A new method for generation of the output signal of a frequency synthesizer of quantum frequency standards is considered. It is demonstrated that this method provides an opportunity to enhance spectral characteristics of the output signal, expand the range of output frequencies, and reduce the tuning step of the output frequency. A considerable (more than 10%) improvement in the frequency stability of a cesium-133 quantum standard and a 2.4-fold improvement in its temperature coefficient of frequency are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. I. Dudkin and L. N. Pakhomov, Quantum Electronics (Politekh. Instit., St. Petersburg, 2012) [in Russian].

  2. F. Riehle, Frequency Standards: Basics and Applications (Wiley-VCH, Weinheim, 2006; Fizmatlit, Moscow, 2009).

  3. A. A. Petrov, V. V. Davydov, N. S. Myazin, and V. E. Kaganovskiy, Lecture Notes in Computer Science (LNCS), Subseries: Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics 10531, 561 (2017).

  4. A. A. Petrov and V. V. Davydov, Lecture Notes in Computer Science (LNCS), Subseries: Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics 9247, 739 (2015).

  5. V. N. Baryshev, D. S. Kupalov, A. V. Novoselov, et al., Izmerit. Tekh., No. 12, 33 (2016).

  6. C. Audoin and B. Guinot, The Measurement of Time: Time, Frequency, and the Atomic Clock (Cambrige Univ., Cambrige, 2001; Tekhnosfera, Moscow, 2002).

  7. V. V. Semenov, N. F. Nikiforov, S. V. Ermak, and V. V. Davydov, Radiotech. Elektron. 35, 2179 (1990).

    Google Scholar 

  8. A. G. Pavelyev, S. S. Matyugov, and O. I. Yakovlev, J. Commun. Technol. Electron. 53, 1021 (2008).

    Article  Google Scholar 

  9. A. A. Pakhomov, J. Commun. Technol. Electron. 52, 1114 (2007).

    Article  Google Scholar 

  10. S. F. Gorgadze and V. V. Boikov, J. Commun. Technol. Electron. 59, 245 (2014).

    Article  Google Scholar 

  11. A. A. Petrov and V. V. Davydov, J. Commun. Technol. Electron. 62, 289 (2017).

    Article  Google Scholar 

  12. T. S. Karaulanov, M. T. Graf, D. P. English, et al., Phys. Rev. A 79, 012902 (2009).

    Article  Google Scholar 

  13. S. V. Sokolov, V. V. Kamenskii, S. M. Kovalev, and E. N. Tishchenko, Izmerit. Tekh., No. 1, 19 (2017).

  14. A. A. Petrov and V. V. Davydov, J. Phys.: Conf. Ser. 769, 012065 (2016).

    Google Scholar 

  15. A. A. Petrov, V. A. Vologdin, V. V. Davydov, and D. V. Zalyotov, J. Phys.: Conf. Ser. 643, 012087 (2015).

    Google Scholar 

  16. L. I. Ridiko, Komponenty i Tekh., No. 7, 76 (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Davydov.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, A.A., Davydov, V.V. & Grebennikova, N.M. On the Potential Application of Direct Digital Synthesis in the Development of Frequency Synthesizers for Quantum Frequency Standards. J. Commun. Technol. Electron. 63, 1281–1285 (2018). https://doi.org/10.1134/S1064226918110086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226918110086

Navigation