Skip to main content
Log in

Electron-Optical Systems with a Shielded Cathode and an Elliptical Ribbon Beam

  • ELECTRON AND ION OPTICS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract—Based on the theory of high-density electron flows with the elliptical current tubes, a model of a ribbon beam from a shielded cathode in the case of emission in the ρ mode has been built. Algorithms of formation of high-compression flows passing into the Brillouin mode without oscillations with preserved elliptical cross section not rotated or strained have been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Notes

  1. Calculations were performed by T.M. Sapronova.

  2. The law of the cross section or compression conservation during retardation is well known in exact solutions of the beam equations describing the flow from a flat cathode or a cathode in the form of a logarithmic spiral [18, 20].

REFERENCES

  1. K. T. Nguen, J. Pasour, E. L. Wright, et al., in Proc. IEEE Int. Vacuum Electron. Conf. (IVEC-2008), Monterey, Apr. 22–24, 2008 (IEEE, New York, 2008), p. 179.

  2. M. Cusick, J. Atkinson, A. Balkcum, et al., in Proc. IEEE Int. Vacuum Electron. Conf. (IVEC-2009), Rome, Apr. 28–30, 2009 (IEEE, New York, 2009), p. 296.

  3. J. Pasour, K. Nguen, T. Antonsen, et al., in Proc. IEEE Int. Vacuum Electron. Conf. (IVEC-2009) Rome, Apr. 28–30, 2009 (IEEE, New York, 2009), p. 300.

  4. J. Pasour, E. Wright, K. Nguen, et al., in Proc. IEEE Int. Vacuum Electron. Conf. (IVEC-2010), Monterey, May 18–20, 2010 (IEEE, New York, 2010), p. 43.

  5. J. Pasour, K. Nguen, E. Wright, et al., IEEE Trans. Electron Devices 58, 1792 (2011).

    Article  Google Scholar 

  6. X. Tang, Z. Duan, X. Guo, et al., in Proc. IEEE Int. Vacuum Electron. Conf. (IVEC-2012), Monterey, Apr. 24–26, 2012 (IEEE, New York, 2012), p. 385.

  7. S. K. Jangid, A. K. Bandyopadhyay, L. M. Joshi, et al., in Proc. IEEE Int. Vacuum Electron. Conf. (IVEC-2013), Paris, May 21–23, 2013 (IEEE, New York, 2013), p. 34.

  8. J. Pasour, D. Abe, K. Nguen, et al., in Proc. IEEE Int. Vacuum Electron. Conf. (IVEC-2014), Monterey, Apr. 22–24, 2014 (IEEE, New York, 2014), p. 19.

  9. B. Levush, J. Pasour, D. Abe, et al., in Conf. Guide 39th Int. Conf. Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Tucson, Sept. 14–19, 2014 (IEEE, New York, 2014), p. 121.

  10. C. Ruan, S. Wang, Y. Han, et al., IEEE Trans. Electron Devices 61, 1643 (2014).

    Article  Google Scholar 

  11. D. Pershing, K. Nguen, D. K. Abe, et al., in Proc. IEEE Int. Vacuum Electron. Conf. (IVEC-2014), Monterey, Apr. 22–24, 2014 (IEEE, New York, 2014), p. 1643.

  12. V. N. Manuilov, V. Yu. Zaslavskii, M. Yu. Glyavin, et al., in Problems of Theoretical and Applied Electronic and Ionic Optics (Proc. XI All-Russia Workshop, Moscow, 2013) (GNTs RF NPO ORION, Moscow, 2013), p. 55.

  13. V. N. Manuilov, V. Yu. Zaslavsky, N. S. Ginzburg, et al., Phys. Plasmas 21, 023106 (2014).

    Article  Google Scholar 

  14. V. A. Syrovoi, J. Commun. Technol. Electron. 51, 827 (2006).

    Article  Google Scholar 

  15. P. I. Akimov, P. V. Nevskii, and V. A. Syrovoi, J. Commun. Technol. Electron. 54, 92 (2009).

    Article  Google Scholar 

  16. V. A. Syrovoi, J. Commun. Technol. Electron. 53, 946 (2008).

    Article  Google Scholar 

  17. V. A. Syrovoi, J. Commun. Technol. Electron. 56, 97 (2011).

    Article  Google Scholar 

  18. V. A. Syrovoi, Theory of the Intense Beams of Charged Particles (Elsevier, Amsterdam, 2011).

    Google Scholar 

  19. V. N. Danilov, Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1968).

  20. V. A. Syrovoi, Theory of the Intense Beams of Charged Particles (Energoatomizdat, Moscow, 2004) [in Russian].

    Google Scholar 

  21. M. Van-Daik, Perturbation Methods in Fluid Mechanics (Academic, New York, 1964; Mir, Moscow, 1967).

  22. V. A. Syrovoi, J. Commun. Technol. Electron. 57, 1208 (2012).

    Article  Google Scholar 

  23. V. A. Syrovoi, Introduction to the Theory of the Intense Beams of Charged Particles (Energoatomizdat, Moscow, 2004) [in Russian].

    Google Scholar 

  24. B. Meltzer, J. Electronics and Control 2, 118 (1956).

    Article  Google Scholar 

  25. Yu. I. Aleksakhin, Method for the synthesis of the sources of paraxial Brillouin streams, Preprint No. R84-619, OIYaI (Joint Institute for Nuclear Reasearch, Dubna, 1984).

    Google Scholar 

  26. K. L. Sergeev, Design of magetic systems of electric vacuum devices on the basis of permanent magnets manufactured from rare-earth materials, Cand. Sci. (Phys.–Math.) Dissertation (NPP Torii, Moscow, 2010).

  27. V. A. Syrovoi, J. Commun. Technol. Electron. 61, 827 (2016).

    Article  Google Scholar 

  28. T. M. Sapronova and V. A. Syrovoi, J. Commun. Technol. Electron. 55, 679 (2010).

    Article  Google Scholar 

  29. Yu. G. Gamayunov, E. V. Patrusheva, A. I. Toreev, and S. A. Shatalina, J. Commun. Technol. Electron. 53, 323 (2008).

    Article  Google Scholar 

  30. Yu. G. Gamayunov, E. V. Patrusheva, Yu. A. Grigoriev, et al., in Proc. IEEE Int. Vacuum Electron. Conf. (IVEC-2016), Monterey, Apr. 19–21, 2016 (IEEE, New York, 2016), p. 313.

  31. V. T. Ovcharov, Radiotekh. Elektron. (Moscow) 7, 367 (1962).

    Google Scholar 

  32. V. T. Ovcharov, Radiotekh. Elektron. (Moscow) 12, 2156 (1967).

    Google Scholar 

  33. A. D. Gladun, A. S. Dunaev, and V. G. Leiman, Elektron. Tekh. Ser. 1: Elektron. SVCh, No. 10, 48 (1968).

    Google Scholar 

  34. V. G. Leiman, Elektron. Tekh. Ser. 1: Elektron. SVCh, No. 5, 16 (1969).

    Google Scholar 

  35. V. G. Leiman, Fiz. Plazmy 13, 1216 (1987).

    Google Scholar 

  36. V. G. Leiman, M. G. Nikulin, and N. E. Rozanov, Zh. Tech. Fiz. 59 (4), 111 (1989).

    Google Scholar 

  37. N. S. Frolov, A. A. Koronovskii, and A. E. Hramov, Bull. Russian Acad. Sci.: Phys. 81, 27 (2017).

    Article  Google Scholar 

  38. Y. Han, C. Ruan, Y. Wang, et al., in Proc. IEEE Int. Vacuum Electron. Conf. (IVEC-2010), Monterey, May 18–20, 2010 (IEEE, New York, 2010), p. 147.

  39. K. T. Nguen, J. A. Pasour, T. M. Antonsen, et al., IEEE Trans. Electron Devices 56, 744 (2009).

  40. X. Tang, G. Sha, Z. Duan, et al., in Proc. IEEE Int. Vacuum Electron. Conf. (IVEC-2013), Paris, May 21–23, 2013 (IEEE, New York, 2013), p. 6570953.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Syrovoi.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akimov, P.I., Gavrilin, A.A., Nikitin, A.P. et al. Electron-Optical Systems with a Shielded Cathode and an Elliptical Ribbon Beam. J. Commun. Technol. Electron. 63, 1303–1318 (2018). https://doi.org/10.1134/S1064226918110013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226918110013

Navigation