Skip to main content
Log in

Nonstationary fluid dynamics under exposure to nanosecond voltage pulses

  • Microwave Electronics
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A numerical analysis of the liquid motion in a spherical capacitor under the applied voltage pulse with a duration of several nanoseconds and a peak value to 300 kV is performed. A system of hydrodynamics equations written in the general form in the spherical coordinate system and the Tait equation of state are used to simulate the liquid motion. The electrostrictive pressure is calculated for a liquid in the form of a dipole dielectric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Ya. Ushakov, V. F. Klimkin, S. M. Korobeinikov, and V. V. Lopatin, Breakdown of Liquids at a Pulse Voltage (Izd-vo Nauch.-Tekh. Lit., Tomsk, 2005) [in Russian].

    Google Scholar 

  2. M. N. Shneider and M. Pekker, Phys. Rev. E 87, 043004 (2013).

    Article  Google Scholar 

  3. Y. Seepersad, M. Pekker, M. N. Shneider, et al., J. Phys. D: Appl. Phys. 46, 162001 (2013).

    Article  Google Scholar 

  4. M. N. Shneider, M. Pekker, and A. Fridman, IEEE Trans. Dielectr. Electr. Insul. 19, 1579 (2012).

    Article  Google Scholar 

  5. T. Ihara, T. Furusato, S. Rameda, et al., J. Phys. D: Appl. Phys. 45, 075204 (2012).

    Article  Google Scholar 

  6. V. Vdovin, V. Andreev, and V. Kulagin, in Proc. 2014 IEEE Int. Power Modulator and High Voltage Conf., Santa Fe, Jun. 1–5, 2014 (IEEE, New York, 2014).

    Google Scholar 

  7. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media (Fizmatlit, Moscow, 1992; Pergamon, New York, 1960).

    Google Scholar 

  8. L. D. Landau and E. M. Lifshits, Hydrodynamics (Nauka, Moscow, 1980; Pergamon, Oxford, 1982).

    Google Scholar 

  9. R. I. Nigmatulin and R. Kh. Bolotnova, Tr. Inst. Mekh. Ufim. Nauch. Tsentra RAN, No. 4, 186 (2007).

    Google Scholar 

  10. J. S. Jakobs and A. W. Lawson, J. Chem. Phys. 20, 1161 (1952).

    Article  Google Scholar 

  11. D. A. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer (Hemisphere, New York, 1984), Vol. 1.

    MATH  Google Scholar 

  12. D. A. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer (Hemisphere, New York, 1984), Vol. 2.

    MATH  Google Scholar 

  13. K. Udagawa, S. Gorbatov, F. Pliavaka, et al., in Proc. 46th AIAA Aerospace Sciences Meet. and Exhibit., Reno, Jan. 7–10, 2008 (Amer. Inst. of Aeronautics and Astronautics, Reston, 2008), p. 1104.

    Google Scholar 

  14. T. G. Leighton, The Acoustic Bubble (Academic, London, 1994).

    Google Scholar 

  15. E. Herbert, S. Balibar, and F. Caupin, Phys. Rev. E 74, 041603 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Vdovin.

Additional information

Original Russian Text © V.G. Andreev, V.A. Vdovin, V.N. Kornienko, 2016, published in Radiotekhnika i Elektronika, 2016, Vol. 61, No. 7, pp. 681–688.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, V.G., Vdovin, V.A. & Kornienko, V.N. Nonstationary fluid dynamics under exposure to nanosecond voltage pulses. J. Commun. Technol. Electron. 61, 817–823 (2016). https://doi.org/10.1134/S1064226916070019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226916070019

Navigation