Skip to main content
Log in

Transient electrohydrodynamics of a liquid drop in AC electric fields

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The transient behavior of a leaky dielectric liquid drop under a uniform AC electric field of small strength is investigated, using a closed form analytical solution. The drop settles to a quasi-steady state in a relaxation time that is set by the viscosities of the drop and the ambient fluid and the surface tension, and oscillates around a mean deformation with a frequency that is twice the electric field frequency. The mode of instantaneous deformation remains the same (oblate or prolate) or switches between oblate and prolate, depending on the relative importance of the time-periodic component of the deformation compared to that of the time-exponential. The structure of the flow field and its evolution is studied for representative fluid systems at a high and a low electric field frequency. The individual contribution of the net tangential and normal electric stresses, which are the driving forces of the problem, on the flow structure and drop deformation is characterized. On the basis of the mean (time-independent) and time-periodic components of the driving forces, the flow field is represented as the superposition of three different flow patterns. It is shown that the interplay of these flow patterns leads to formation and destruction of toroidal vortices, and that the residence time of these vortices correlates inversely with the field frequency.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Wang, Z. Suo, X. Zhao, Nat. Commun. 3, 1157 (2012)

    Article  ADS  Google Scholar 

  2. J.S. Eow, M. Ghadiri, Chem. Eng. J. 85, 357 (2002)

    Article  Google Scholar 

  3. H. Kim, D. Luo, D. Link, D.A. Weitz, M. Marquez, Z. Cheng, Appl. Phys. Lett. 91, 133106 (2007)

    Article  ADS  Google Scholar 

  4. G. Taylor, Proc. R. Soc. A 291, 159 (1966)

    ADS  Google Scholar 

  5. C. Smith, J. Melcher, Phys. Fluids 10, 2315 (1967)

    Article  ADS  Google Scholar 

  6. J.R. Melcher, G.I. Taylor, Annu. Rev. Fluid Mech. 1, 111 (1969)

    Article  ADS  Google Scholar 

  7. D.A. Saville, Annu. Rev. Fluid Mech. 29, 27 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Torza, R.G. Cox, S.G. Mason, Philos. Trans. R. Soc. A 269, 295 (1971)

    ADS  Google Scholar 

  9. O. Vizika, D. Saville, J. Fluid Mech. 239, 1 (1992)

    Article  ADS  Google Scholar 

  10. J. Baygents, N. Rivette, H. Stone, J. Fluid Mech. 368, 359 (1998)

    Article  ADS  Google Scholar 

  11. R. Allan, S. Mason, Proc. R. Soc. London A: Math. Phys. Eng. Sci. 267, 45 (1962)

    Article  ADS  Google Scholar 

  12. C. Sozou, Proc. R. Soc. London A: Math. Phys. Eng. Sci. 331, 263 (1972)

    ADS  Google Scholar 

  13. R. Thaokar, Eur. Phys. J. E 35, 76 (2012)

    Article  Google Scholar 

  14. T. Ward, G. Homsy, Phys. Fluids 13, 3521 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Lee, D. Im, I. Kang, Phys. Fluids 12, 1899 (2000)

    Article  ADS  Google Scholar 

  16. T. Ward, G. Homsy, J. Fluid Mech. 547, 215 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. C. Christov, G. Homsy, Phys. Fluids 21, 083102 (2009)

    Article  ADS  Google Scholar 

  18. N. Kaji, Y. Mori, Y. Tochitani, J. Heat Transfer 107, 788 (1985)

    Article  Google Scholar 

  19. A. Esmaeeli, M.A. Halim, Acta Mech. 229, 3943 (2018)

    Article  Google Scholar 

  20. G. Taylor, Proc. R. Soc. Lond. A 313, 453 (1969)

    Article  ADS  Google Scholar 

  21. A. Castellanos, A. Gonzalez, IEEE Trans. Dielectr. Electr. Insul. 5, 334 (1998)

    Article  Google Scholar 

  22. J.Q. Feng, Proc. R. Soc. Lond. A 455, 2245 (1999)

    Article  ADS  Google Scholar 

  23. M.N. Reddy, A. Esmaeeli, Int. J. Multiphase Flow 35, 1051 (2009)

    Article  Google Scholar 

  24. A. Esmaeeli, P. Sharifi, J. Electrost. 69, 504 (2011)

    Article  Google Scholar 

  25. T.B. Jones, Electromechanics of Particles (Cambridge University Press, New York, USA, 1995)

  26. J. Sherwood, J. Fluid Mech. 188, 133 (1988)

    Article  ADS  Google Scholar 

  27. T. Tsukada, T. Katayama, Y. Ito, M. Hozawa, J. Chem. Eng. Jpn. 26, 698 (1993)

    Article  Google Scholar 

  28. J.Q. Feng, T.C. Scott, J. Fluid Mech. 311, 289 (1996)

    Article  ADS  Google Scholar 

  29. E. Lac, G.M. Homsy, J. Fluid Mech. 590, 239 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  30. O. Ajayi, Proc. R. Soc. Lond. A 364, 499 (1978)

    Article  ADS  Google Scholar 

  31. J.W. Ha, S.M. Yang, J. Fluid Mech. 405, 131 (2000)

    Article  ADS  Google Scholar 

  32. A. Esmaeeli, A. Behjatian, Phys. Rev. E 86, 036310 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Esmaeeli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeeli, A. Transient electrohydrodynamics of a liquid drop in AC electric fields. Eur. Phys. J. E 41, 135 (2018). https://doi.org/10.1140/epje/i2018-11745-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11745-1

Keywords

Navigation