Skip to main content
Log in

Application of approximate boundary conditions for calculation of planar 2D periodic nanoplasmon structures

  • Electrodynamics and Wave Propagation
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A rigorous and an approximate method are applied to solve the problem of diffraction of electromagnetic waves of the optical range from a 2D grating made of rectangular metal strips. The rigorous method is based on the numerical-analytical method of the solution of a volume integro-differential equation (VIDE). In the second method, the approximate boundary conditions (ABCs) for a thin dielectric layer are used. The correctness of the ABC method applied for determining the basic physical regularities is justified. More accurate ABCs and the notion of effective dimensions of strips are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Vainshtein, Open Resonators and Open Waveguides (Sovetskoe Radio, Moscow, 1966) [in Russian].

    Google Scholar 

  2. T. L. Zinenko, A. I. Nosich, and Y. Okuno, IEEE Trans. Antennas Propag. 46, 1498 (1998).

    Article  Google Scholar 

  3. T. L. Zinenko and A. I. Nosich, IEEE Trans. Antennas Propag. 54, 2088 (2006).

    Article  Google Scholar 

  4. T. L. Zinenko, M. Marciniak, and A. I. Nosich, IEEE J. Sel. Top. Quantum Electron 19, 9000108 (2013).

    Article  Google Scholar 

  5. O. V. Shapoval, R. Sauleau, and A. I. Nosich, IEEE Trans. Antennas Propag. 59, 3339 (2011).

    Article  Google Scholar 

  6. O. V. Shapoval and A. I. Nosich, AIP Advances 3, 042120 (2013).

    Article  Google Scholar 

  7. O. V. Shapoval, R. Sauleau, and A. I. Nosich, IEEE Trans. Nanotechnol. 12, 442 (2013).

    Article  Google Scholar 

  8. A. M. Lerer, V. V. Makhno, P. V. Makhno, and A. A. Yachmenov, J. Commun. Technol. Electron. 52 399 (2007).

    Article  Google Scholar 

  9. D. E. Zelenchuk, I. A. Kaz’min, A. M. Lerer, et al., J. Commun. Technol. Electron. 54, 399 (2009).

    Article  Google Scholar 

  10. A. M. Lerer, J. Commun. Technol. Electron. 56, 269 (2011).

    Article  Google Scholar 

  11. A. M. Lerer, Radiotekh. Elektron. (Moscow) 36, 1923 (1991).

    Google Scholar 

  12. K. M. Mitzner, IEEE Trans. Antennas Propag. 16, 706 (1968).

    Article  Google Scholar 

  13. E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, IEEE Antennas Propag. Mag. 35 (6), 14 (1993).

    Article  Google Scholar 

  14. A. M. Lerer, J. Commun. Technol. Electron. 57, 1151 (2012).

    Article  Google Scholar 

  15. V. F. Kravchenko, O. S. Labun’ko, A. M. Lerer, and G. P. Sinyavskii, Computational Methods in Modern Radio Physics (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  16. H. Bateman and A. Erdelyi, Tables of Integral Transforms (McGraw-Hill, New York, 1954; Nauka, Moscow, 1969), Vol. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Lerer.

Additional information

Original Russian Text © A.M. Lerer, I.N. Ivanova, 2016, published in Radiotekhnika i Elektronika, 2016, Vol. 61, No. 5, pp. 435–441.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lerer, A.M., Ivanova, I.N. Application of approximate boundary conditions for calculation of planar 2D periodic nanoplasmon structures. J. Commun. Technol. Electron. 61, 486–491 (2016). https://doi.org/10.1134/S1064226916050089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226916050089

Navigation