Skip to main content
Log in

Electromagnetic loss of fresh ice in microwave range at a temperature of 0°C

  • Radio Phenomena in Solids and Plasma
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The decay of microwave radiation in melting fresh ice is studied in the millimeter wavelength range (at frequencies of 90 and 34 GHz). It is demonstrated that ice at a temperature of 0°C may exhibit a decrease in the electromagnetic loss up to several tens of percents presumably due to the streamflow in the presence of internal mechanical stress or complete absence of loss at different stages of melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Warren, Appl. Opt. 23, 1206 (1984).

    Article  Google Scholar 

  2. C. Matzler and U. Wegmuller, J. Phys. D: Appl. Phys. 20, 1623 (1987).

    Article  Google Scholar 

  3. G. S. Bordonskii, A. O. Orlov, and T. G. Filippova, J. Commun. Technol. Electron. 51, 297 (2006).

    Article  Google Scholar 

  4. J. H. Jiang and D. L. Wu, Atmospheric Sci. Lett. 5(7), 146 (2004).

    Article  Google Scholar 

  5. G. S. Bordonskii, A. A. Gurulev, and S. D. Krylov, Tech. Phys. Lett. 35, 1047 (2009).

    Article  Google Scholar 

  6. V. F. Petrenko and R. W. Whitworth, Physics of Ice (Clarendon, Oxford, 1999).

    Google Scholar 

  7. L. I. Men’shikov, Usp. Fiz. Nauk 169, 113 (1999).

    Article  Google Scholar 

  8. V. G. Glushnev, B. D. Slutsker, and M. I. Finkel’shtein, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 19, 1305 (1976).

    Google Scholar 

  9. A. Stogryn, IEEE Trans. Geosci. Electron. 24, 220 (1986).

    Article  Google Scholar 

  10. V. V. Bogorodskii and V. P. Gavrilo, Ice. Physical Characteristics. Modern Methods in Glaciology (Gidrometeoizdat, Leningrad, 1980) [in Russian].

    Google Scholar 

  11. G. S. Bordonskii, Phys. Solid State 47, 715 (2005).

    Article  Google Scholar 

  12. R. A. Silin, Periodic Waveguides (Fazis, Moscow, 2002) [in Russian].

    Google Scholar 

  13. V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons (Nauka, Moscow, 1979; Springer-Verlag, New York, 1984).

    Google Scholar 

  14. S. I. Pekar, Crystal Optics and Additional Light Waves (Naukova Dumka, Kiev, 1982) [in Russian].

    Google Scholar 

  15. G. S. Bordonskiy, A. A. Gurulev, S. D. Krylov, A. Ts. Tsybikzhapov, and S. V. Tsyrenzhapov, Tech. Phys. 76, 626 (2006).

    Article  Google Scholar 

  16. G. S. Bordonskii, A. O. Orlov, and T. G. Filippova, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 47, 292 (2004).

    Google Scholar 

  17. V. P. Starr, Physics of Negative Viscosity Phenomena (McGraw-Hill, New York, 1968; Mir, Moscow, 1971).

    Google Scholar 

  18. I. A. Bashkirtseva, A. Yu. Zubarev, L. Yu. Iskakova, and L. B. Ryashko, Nelin. Din. 5, 603 (2009).

    Google Scholar 

  19. R. Drews, O. Eisen, I. Weikusat, et al., Cryosphere 3, 195 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Bordonskii.

Additional information

Original Russian Text © G.S. Bordonskii, A.A. Gurulev, S.D. Krylov, 2014, published in Radiotekhnika i Elektronika, 2014, Vol. 59, No. 6, pp. 587–592.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordonskii, G.S., Gurulev, A.A. & Krylov, S.D. Electromagnetic loss of fresh ice in microwave range at a temperature of 0°C. J. Commun. Technol. Electron. 59, 536–540 (2014). https://doi.org/10.1134/S1064226914060060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226914060060

Keywords

Navigation