Skip to main content
Log in

Anomaly of Microwave Absorption of Ice near –45°C under Plastic Deformation

  • RADIOPHYSICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The microwave absorption of fresh ice subjected to plastic deformation when changing temperature from 0 to –60°C has been measured. A decrease in the losses of radiation transmission through ice at frequencies of 32 and 125 GHz with extremum at a temperature of –45°C was found. This temperature corresponds to the point at atmospheric pressure at the Widom line, which starts from a hypothetic second critical point in pressure–temperature phase space. The used measuring technique makes it possible to obtain layers of deeply supercooled water into ice and study the position of the Widom line and second critical point in phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. C. A. Angell, M. Ogumi, and W. J. Sichina, J. Phys. Chem. 86, 998 (1982). https://doi.org/10.1021/j100395a032

    Article  Google Scholar 

  2. O. Mishima, J. Chem. Phys. 133, 144503 (2010). https://doi.org/10.1063/1.3487999

    Article  ADS  Google Scholar 

  3. J. W. Biddle, V. Holten, and M. A. Anisimov, J. Chem. Phys. 141, 074504 (2014). https://doi.org/10.1063/1.4892972

    Article  ADS  Google Scholar 

  4. J. A. Sellberg, C. Huang, T. A. McQuen, N. D. Loh, H. Laksmono, D. Schlesinger, R. G. Sierra, D. Nordlund, C. Y. Hampton, D. Starodub, D. P. De Ponte, M. Beye, C. Chen, A. V. Martin, A. Barty, et al., Nature 510, 381 (2014). https://doi.org/10.1038/nature13266

    Article  ADS  Google Scholar 

  5. K. H. Kim, A. Spah, H. Pathak, F. Perakis, D. Mariedahl, K. Amann-Winkel, J. A. Sellberg, J. H. Lee, S. Kim, J. Park, K. H. Nam, T. Katayama, and A. Nilsson, Science 358, 1589 (2017). https://doi.org/10.1126/science.aap8269

    Article  ADS  MathSciNet  Google Scholar 

  6. H. E. Stanley, S. V. Buldyrev, G. Franzese, S. Havlin, F. Mallamace, P. Kumar, V. Plerou, and T. Preis, Phys. A 389, 2880 (2010). https://doi.org/10.1016/j.physa.2010.02.023

    Article  Google Scholar 

  7. G. Franzese and Н. E. Stanley, J. Phys.: Condens. Matter 19, 205126 (2007). https://doi.org/10.1088/0953-8984/19/20/205126

    ADS  Google Scholar 

  8. P. H. Handle, T. Loerting, and F. Scortino, Proc. Natl. Acad. Sci. U. S. A. 114, 13336 (2017). https://doi.org/10.1073/pnas.1700103114

    Article  ADS  Google Scholar 

  9. G. S. Bordonskii, A. A. Gurulev, and S. D. Krylov, J. Commun. Technol. Electron. 59, 536 (2014). https://doi.org/10.1134/S1064226914060060

    Article  Google Scholar 

  10. G. S. Bordonskii and A. A. Gurulev, Tech. Phys. Lett. 43, 380 (2017). https://doi.org/10.1134/S1063785017040174

    Article  ADS  Google Scholar 

  11. V. M. Silonov and V. V. Chubarov, RENSIT 27, 55 (2015). https://doi.org/10.17725/rensit.2015.07.055

    Article  Google Scholar 

  12. http://www1.lsbu.ac.uk/water/amorphous_ice.html#su-per/.

  13. L. B. Zuev, V. I. Danilov, S. A. Barannikova, and N.  A.  Ploskov, Tech. Phys. 63, 829 (2018). https://doi.org/10.1134/S1063784218060257

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Bordonskii.

Additional information

Translated by M. Astrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordonskii, G.S. Anomaly of Microwave Absorption of Ice near –45°C under Plastic Deformation. Tech. Phys. 64, 414–417 (2019). https://doi.org/10.1134/S1063784219030071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219030071

Navigation