Skip to main content
Log in

Analysis of 1D periodic dielectric structures using a hybrid projection method

  • Electrodynamics and Wave Propagation
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A method is proposed for analysis of longitudinally inhomogeneous 1D periodic dielectric structures located on a homogeneous magnetodielectric layer. According to the method, in the case of the E (H) polarization, the transverse electric (magnetic) field in the region containing the elements of the structure is expanded over transverse functions of Floquet harmonics with unknown variable coefficients. Projection of the Helmholtz equations for the aforementioned fields onto the transverse functions, application of the 1D method of finite elements for the longitudinal coordinate, and use of projection matching of the fields on the boundaries of partial regions reduce the problem to numerically solvable systems of linear algebraic equations. The results of comparison demonstrating the efficiency of the method, the results of optimization of rectangular and triangular elements of a lossless dielectric structure designed for matching to free space, and the reflection coefficients for absorbing periodic structures based on recently developed wideband polyurethane-foam materials with a superdispersed carbonic filler are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Morita and S. B. Cohn, IRE Trans. Antennas Propag. 4, 33 (1956).

    Google Scholar 

  2. M. S. Zhuk and Yu. B. Molochkov, Design of Lens, Scaning, Wideband Antennas and Feeder Devices (Energiya, Moscow, 1973) [in Russian].

    Google Scholar 

  3. M. S. Mirotznik, B. L. Good, P. Ransom, et al., IEEE Trans. Antennas Propag. 58, 2969 (2010).

    Article  Google Scholar 

  4. W. H. Emerson, IEEE Trans. Antennas Propag. 21, 484 (1973).

    Article  Google Scholar 

  5. M. Yu. Mitsmakher and V. A. Torgovanov, Microwave Anechoic Chambers (Radio i svyaz’, Moscow, 1982) [in Russian].

    Google Scholar 

  6. S. P. Skobelev, Phased Arrays with Sector-Shaped Partial Patterns (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  7. H. L. Bertoni, L.-H. S. Cheo, and T. Tamir, IEEE Trans. Antennas Propag. 17, 78 (1989).

    Article  Google Scholar 

  8. A. Coves, B. Gimeno, A. A. San Blas, et al., IEEE Antennas and Wireless Propagation Lett. 2, 215 (2003).

    Article  Google Scholar 

  9. J.-F. Kiang, IEEE Trans. Antennas Propag. 46, 176 (1998).

    Article  Google Scholar 

  10. H.-C. Chu, S.-K. Jeng, and C. H. Chen, Trans. Antennas Propag. 45, 1065 (1997).

    Article  Google Scholar 

  11. R. Janaswamy, IEEE Trans. Antennas Propag. 40, 162 (1992).

    Article  Google Scholar 

  12. N. Marly, D. De Zutter, and H. F. Pues, IEEE Trans. Electromagn. Compat. 36, 14 (1994).

    Article  Google Scholar 

  13. A. Boag, Y. Leviatan, and A. Boad, IEEE Trans. Antennas Propag. 37, 1437 (1989).

    Article  Google Scholar 

  14. C. Yang, W. D. Burnside, and R. C. Rudduck, IEEE Trans. Antennas Propag. 40, 652 (1992).

    Article  Google Scholar 

  15. C. Yang, W. D. Burnside, and R. C. Rudduck, IEEE Trans. Antennas Propag. 41, 600 (1993).

    Article  Google Scholar 

  16. W. Sun, K. Liu, and C. A. Balanis, IEEE Trans. Antennas Propag. 44, 798 (1996).

    Article  Google Scholar 

  17. A. G. Kyurkchan, Dokl. AN 339, 600 (1994).

    MathSciNet  Google Scholar 

  18. Y. Nakata, M. Koshiba, and M. Suzuki, Trans. Inst. Electron. Commun. Eng. Jpn. J69-C, 1503 (1986).

    Google Scholar 

  19. Y. Jiang and A. Q. Martin, in Proc. 1999 IEEE Int. Antennas Propagat. Symp., Orlando, Florida, 1999 (IEEE, New York, 1999), Vol. 37, p. 2622.

    Google Scholar 

  20. Y. Nakata and M. Koshiba, J. Opt. Soc. Am. A 7, 1494 (1990).

    Article  Google Scholar 

  21. A. S. Il’inskii and A. G. Sveshnikov, in Collection of Methodological Articles on Applied Electrodynamics (Vysshaya shkola, Moscow, 1977), No. 1, p. 51 [in Russian].

    Google Scholar 

  22. D. E. Tremain and K. K. Mei, J. Opt. Soc. Am. 68, 775 (1978).

    Article  Google Scholar 

  23. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 72, 1385 (1982).

    Article  Google Scholar 

  24. W. P. Pinello, R. Lee, and A. C. Cangellaris, IEEE Trans. Microwave Theory Tech. 42, 2294 (1994).

    Article  Google Scholar 

  25. M. Davidovitz, IEEE Trans. Microwave Theory Tech. 40, 355 (2001).

    Article  Google Scholar 

  26. S. P. Skobelev and A. A. Yaparova, J. Commun. Techn. Electron. 52, 293 (2007).

    Article  Google Scholar 

  27. S. B. Bibikov, O. N. Smolnikova, S. B. Menshova, et al., in Proc. of 5th Int. Conf. on Ultrawideband and Ultrashort Impulse Signals, Sevastopol, Ukraine, Sept. 6–10, 2010 (IEEE, New Yok, 2010), p. 262.

    Book  Google Scholar 

  28. O. N. Smol’nikova, Candidate’s Dissertation in Engineering (Gos. Techn. Univ. (MAI), Moscow, 2010).

  29. S. B. Bibikov, O. N. Smol’nikova, and M. V. Prokof’ev, Radiotekhnika, No. 3, 62 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Skobelev.

Additional information

Original Russian Text © S.P. Skobelev, O.N. Smol’nikova, 2012, published in Radiotekhnika i Elektronika, 2012, Vol. 57, No. 10, pp. 1066–1077.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skobelev, S.P., Smol’nikova, O.N. Analysis of 1D periodic dielectric structures using a hybrid projection method. J. Commun. Technol. Electron. 57, 1073–1083 (2012). https://doi.org/10.1134/S1064226912070121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226912070121

Keywords

Navigation