Skip to main content
Log in

Homogenization Near Resonances and Artificial Magnetism in Three Dimensional Dielectric Metamaterials

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

It is now well established that the homogenization of a periodic array of parallel dielectric fibers with suitably scaled high permittivity can lead to a (possibly) negative frequency-dependent effective permeability. However this result based on a two-dimensional approach holds merely in the case of linearly polarized magnetic fields, reducing thus its applications to infinite cylindrical obstacles. In this paper we consider a dielectric structure placed in a bounded domain of \({\mathbb{R}^3}\) and perform a full three dimensional asymptotic analysis. The main ingredient is a new averaging method for characterizing the bulk effective magnetic field in the vanishing-period limit. We give evidence of a vectorial spectral problem on the periodic cell which determines micro-resonances and encodes the oscillating behavior of the magnetic field from which artificial magnetism arises. At a macroscopic level we deduce an effective permeability tensor that we can make explicit as a function of the frequency. As far as sign-changing permeability is sought after, we may foresee that periodic bulk dielectric inclusions could be an efficient alternative to the very popular metallic split-ring structure proposed by Pendry. Part of these results have been announced in Bouchitté et al. (C R Math Acad Sci Paris 347(9–10):571–576, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi E., Chiadò Piat V., Dal Maso G., Percivale D.: An extension theorem from connected sets, and homogenization in general periodic domains. Nonlinear Anal. 18(5), 481–496 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allaire G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allaire, G., Conca, C., Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl. (9) 77(2), 153–208, 1998

  4. Arbogast T., Douglas J. Jr., Hornung U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21(4), 823–836 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ávila A., Griso G., Miara B., Rohan E.: Multiscale modeling of elastic waves: theoretical justification and numerical simulation of band gaps. Multiscale Model. Simul. 7(1), 1–21 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berger, M., Gostiaux, B.: Géométrie différentielle, Librairie Armand Colin, Paris, 1972 Maîtrise de mathématiques, Collection U/Série “Mathématiques”

  7. Bouchitté G., Bourel C.: Multiscale nanorod metamaterials and realizable permittivity tensors. Commun. Comput. Phys. 11(2), 489–507 (2012)

    Article  MathSciNet  Google Scholar 

  8. Bouchitté G., Felbacq D.: Homogenization near resonances and artificial magnetism from dielectrics. C. R. Math. Acad. Sci. Paris 339, 377–382 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bouchitté G., Felbacq D.: Homogenization of a wire photonic crystal: the case of small volume fraction. SIAM J. Appl. Math. 66(6), 2061–2084 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bouchitté G., Schweizer B.: Homogenization of Maxwell’s equations in a split ring geometry. Multiscale Model. Simul. 8(3), 717–750 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bouchitté G., Bourel C., Felbacq D.: Homogenization of the 3D Maxwell system near resonances and artificial magnetism. C. R. Math. Acad. Sci. Paris 347(9-10), 571–576 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bouchitté G., Bourel C., Manca L.: Resonant effects in random dielectric structures. ESAIM Control Optim. Calc. Var. 21(1), 217–246 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Căbuz A.I., Nicolet, A., Zolla, F., Felbacq, D., Bouchitté, G.: Homogenization of nonlocal wire metamaterial via a renormalization approach. JOSA B 28(5), 1275–1282, 2011

  14. Cessenat, M.: Mathematical methods in electromagnetism Series on Advances in Mathematics for Applied Sciences, vol. 41, World Scientific Publishing Co. Inc., River Edge, NJ, 1996 Linear theory and applications

  15. Chen Y., Lipton R.: Resonance and double negative behavior in metamaterials. Arch. Ration. Mech. Anal. 209(3), 835–868 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cherednichenko, K., Cooper, Shane: Homogenization of the system of high-contrast Maxwell equations. Mathematika 61(2), 475–500, 2015

  17. Cioranescu D., Donato P.: Homogénéisation du problème de Neumann non homogène dans des ouverts perforés. Asymptotic Anal. 1(2), 115–138 (1988)

    MathSciNet  MATH  Google Scholar 

  18. Felbacq, D. Bouchitté, G.: Theory of mesoscopic magnetism in photonic crystals. Phys. Rev. Lett. 94, 183902, 2005

  19. Felbacq D., Bouchitté G.: Homogenization of a set of parallel fibers. Waves Random Media 7, 1–12 (1997)

    Article  MATH  Google Scholar 

  20. Fortes, S.P., Lipton, R.P., Shipman, Stephen P.: Sub-wavelength plasmonic crystals: dispersion relations and effective properties. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci., 466(2119), 1993–2020, 2010 http://rspa.royalsocietypublishing.org/content/466/2119/1993.full.pdf

  21. Fortes, S.P., Lipton, R.P., Shipman, Stephen P.: Convergent power series for fields in positive or negative high-contrast periodic media. Comm. Partial Differ. Equ. 36(6), 1016–1043, 2011

  22. Gaillot D.P., Croënne C., Lippens D.: An all-dielectric route for terahertz cloaking. Opt. Express 16, 3986–3992 (2008)

    Article  ADS  Google Scholar 

  23. Hess O., Tsakmakidis L.: Metamaterials with quantum gain. Science 339, 654–655 (2013)

    Article  ADS  Google Scholar 

  24. Hua N., Yia W., Suna S., Cuia L., Song Q., Xiaoa S.: Enhancement of magnetic dipole emission at yellow light in optical metamaterials. Opt. Commun. 350(1), 202–206 (2015)

    Article  ADS  Google Scholar 

  25. Jikov, V.V., Kozlov, S.M., Olenik, O.A.: Homogenization of Differential Operators and Integral Functionals Springer, Berlin, Translated from the Russian by G. A. Yosifian [G. A. Iosif’yan], 1994

  26. Kohn R.V., Shipman S.P.: Magnetism and homogenization of microresonators. Multiscale Model. Simul. 7(1), 62–92 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. LukÕyanchuk, B., Zheludev, N.I., Maier, SA., Halas, N.J., Nordlander, P., Giessen, H., Chong, Ch.T.: The fano resonance in plasmonic nanostructures and metamaterials. Nat. Mat. 9, 707–715, 2010

  28. Marshall S.L.: A periodic green function for calculation of coloumbic lattice potentials. J. Phys. Condens. Matter, 12, 4575–4601 (2000)

    Article  ADS  Google Scholar 

  29. Mirzaei, A., Miroshnichenko, A.E., Shadrivov, I.V., Kivshar, Y.S., All-dielectric multilayer cylindrical structures for invisibility cloaking. Sci. Rep., 5, 2015

  30. Moitra P., Slovick B.A., Li W., Kravchencko I.I., Briggs S., Krishnamurthy D.P., Valentine J.: Large-scale all-dielectric metamaterial perfect reflectors. ACS Photon. 2, 692–698 (2015)

    Article  Google Scholar 

  31. Moitra Y., Yang P., Anderson Z., Kravchenko I. I., Briggs D. P., Valentine J.: Realization of an all-dielectric zero-index optical metamaterial. Nat. Photon., 7, 791–795 (2013)

    Article  ADS  Google Scholar 

  32. Moroz A., Tip A.: Resonance-induced effects in photonic crystals. J. Phys. Condens. Matter 11(12), 2503 (1999)

    Article  ADS  Google Scholar 

  33. Murat, F.: Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5(3), 489–507, 1978 (80h:46043a)

  34. Nédélec, J.-C.: A new family of mixed finite elements in \({\mathbb{R}^3}\). Numer. Math. 50(1), 57–81, 1986

  35. O’Brien S., Pendry J.B.: Magnetic activity at infrared frequencies in structured metallic photonic crystals. J. Phys. Condens. Mat. 14(25), 6383–6394 (2002)

    Article  ADS  Google Scholar 

  36. O’Brien S., Pendry J.B.: Photonic band-gaps effects and magnetic activity in dielectric composites. J. Phys. Condens. Matter 14(15), 4035 (2002)

    Article  ADS  Google Scholar 

  37. Pendry J.B., Holden A.J., Robbins D.J., Stewart W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999)

    Article  ADS  Google Scholar 

  38. Tartar, L.: Compensated compactness and applications to partial differential equations. Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, pp. 136–212, 1979. MR584398 (81m:35014)

  39. Zhikov V.V.: On gaps in thespectrum of some divergent elliptic operators with periodic coefficients. St. Petersb. Math. J. 16(5), 719–773 (2004)

    Google Scholar 

  40. Zhao, Q., Kang, L., Du, B., Zhao, H., Xie, Q., Li, B., Zhou, J., Li, L.T., Meng, Yong G,: Isotropic negative permeability composite based on mie resonance of the bst-mgo dielectric medium. Chin. Sci. Bull. 53, 3272–3276, 2008

  41. Zhikov, V.V., Pastukhova, S.E.: On gaps in the spectrum of the operator of elasticity theory on a high contrast periodic structure. J. Math. Sci. (N.Y.) 188(3), 227–240, 2013. Problems in mathematical analysis. No. 67, MR3098317

  42. Zolla F., Felbacq D., Bouchitté G.: Bloch vector dependence of the plasma frequency in metallic photonic crystals. Phys. Rev. E 74(5), 056612 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Bouchitté.

Additional information

Communicated by S. Serfaty

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchitté, G., Bourel, C. & Felbacq, D. Homogenization Near Resonances and Artificial Magnetism in Three Dimensional Dielectric Metamaterials. Arch Rational Mech Anal 225, 1233–1277 (2017). https://doi.org/10.1007/s00205-017-1132-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1132-1

Navigation