Skip to main content
Log in

Excess noise and nonlinear effects in low-dimensional conductors

  • Review
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Experimental results on the 1/f γexcess noise and the nonlinearity of the I–V characteristics in nanosized semiconductors based on thin metal (Ni, Cu, and Au) films at various current loads and temperatures are presented. It is demonstrated that relatively slow processes related to the heat exchange of film and substrate serve as the reason for the nonlinearity of the I-V characteristic in low-dimensional conductors. A method to determine the melting point of low-dimensional conductors based on the measurement of the positions of the voltage fluctuation peaks on the temperature-time scale caused by the primary fluctuations of the film resistance in the vicinity of the melting point in the presence of a low-density current flow in the sample and slow heating. The starting temperature of melting of nanosized nickel and gold films on oxidized silicon is experimentally determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. P. Zhigal’skii, Radiotekh. Elektron. (Moscow) 50, 517 (2005) [J. Commun. Technol. Electron. 50, 477 (2005)].

    Google Scholar 

  2. M. S. Gupta, Proc. IEEE 63, 996 (1975).

    Article  Google Scholar 

  3. G. P. Zhigal’skii and B. K. Jones, The Physical Properties of Thin Metal Films (Taylor and Francis Publ. Group, London, 2003).

    Google Scholar 

  4. Yu. F. Komnik, Physics of Metal Films (Atomizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  5. D. G. Gromov, S. A. Gavrilov, E. N. Redichev, et al., Zh. Fiz. Khim. 80, 1856 (2006) [Russ. J. Phys. Chem. 80, 1650 (2006)].

    Google Scholar 

  6. G. P. Zhigal’skii and A. V. Karev, Radiotekh. Elektron. (Moscow) 44, 220 (1999) [J. Commun. Technol. Electron. 44, 206 (1999)].

    Google Scholar 

  7. G. P. Zhigal’skii, Usp. Fiz. Nauk 173, 465 (2003).

    Article  Google Scholar 

  8. D. G. Gromov, G. P. Zhigal’skii, A. V. Karev, et al., Izv. Vyssh. Uchebn. Zaved. Elektron., No. 5, 84 (2007).

  9. D. G. Gromov, G. P. Zhigal’skii, A. V. Karev, et al., in Noise and Degradation Processes in Semiconductor Devices (Proc. Int. Sci.-methodic Seminar, Moscow, Nov., 2007) (Ross. Nauch.-Tekh. Obshch. Radiotekh. Elektron. Svyazi im. A. S. Popova, Moscow, 2007), p. 54.

    Google Scholar 

  10. G. P. Zhigal’skii, Usp. Fiz. Nauk 167, 623 (1997).

    Article  Google Scholar 

  11. D. G. Gromov, G. P. Zhigal’skii, A. V. Karev, et al., in Fluctuation and Degradation Processes in Semiconductor Devices (Proc. Int. Sci.-methodic Seminar, Moscow, Nov., 2009) (Ross. Nauch.-Tekh. Obshch. Radiotekh. Elektron. Svyazi im. A. S. Popova, Moscow, 2009), p. 57.

    Google Scholar 

  12. S. A. Gavrilov, D. G. Gromov, G. P. Zhigal’skii, et al., Izv. Vyssh. Uchebn. Zaved. Elektronika, No. 6, 37 (2009).

  13. W. W. Wendlandt, Thermal Methods of Analysis (Wiley, New York, 1974; Mir, Moscow, 1978).

    Google Scholar 

  14. L. A. Bityutskaya and G. D. Seleznev, Pis’ma Zh. Tekh. Fiz. 24(14), 24 (1998).

    Google Scholar 

  15. L. A. Bityutskaya and E. S. Mashkina, Pis’ma Zh. Tekh. Fiz. 21(24), 90 (1995).

    Google Scholar 

  16. L. A. Bityutskaya and G. D. Seleznev, Fiz. Tverd. Tela 41, 1679 (1999).

    Google Scholar 

  17. D. G. Gromov, S. A. Gavrilov, A. T. Berestov, et al., Method to Determine Equilibrium Melting Points of Nanosized Thin Films (Procedure GSSSD ME 145-2008.) (Standartinform., Moscow, 2008) [in Russian].

    Google Scholar 

  18. S. A. Gavrilov, D. G. Gromov, G. P. Zhigal’skii, et al., in Fluctuation and Degradation Processes in Semiconductor Devices (Proc. Int. Sci.-methodic Seminar, Moscow, Nov., 2009) (Ross. Nauch.-Tekh. Obshch. Radiotekh. Elektron. Svyazi im. A. S. Popova, Moscow, 2009), p. 70.

    Google Scholar 

  19. A. T. Berestov, S. A. Gavrilov, D. G. Gromov,, et al., A Technique of determination of the Melting Temperature for Nanodimensional Thin Conducting Films (Procedure GSSSD ME 154-2009) (Standartinform., Moscow, 2009).

    Google Scholar 

  20. N. S. Erokhin and S. S. Moiseev, in Problems of Geophysics of the XXI Century, Ed. by A. V. Nikolaev (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  21. S. F. Timashev, Flicker-noise Spectroscopy: Information in Chaotic Signals (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  22. G. P. Zhigal’skii, D. G. Gromov, A. V. Karev, et al., in Noise and Degradation Processes in Semiconductor Devices (Proc. Int. Sci.-methodic Seminar, Moscow, Nov., 2007) (Ross. Nauch.-Tekh. Obshch. Radiotekh. Elektron. Svyazi im. A. S. Popova, Moscow, 2008), p. 70.

    Google Scholar 

Download references

Authors

Additional information

Original Russian Text © G.P. Zhigal’skii, 2010, published in Radiotekhnika i Electronika, 2010, Vol. 55, No. 3, pp. 261–276.

The most important results were reported at the XXXVIIXXXIX International Seminars on Noise and Degradation Processes in Semiconductor Devices (2006–2008) and were presented in the corresponding Proceedings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhigal’ski, G.P. Excess noise and nonlinear effects in low-dimensional conductors. J. Commun. Technol. Electron. 55, 241–255 (2010). https://doi.org/10.1134/S1064226910030010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226910030010

Keywords

Navigation