Skip to main content
Log in

The Influence of a Nanosecond Spark Discharge on the Oblique Collision of a Steel Sphere with a Metal Plate

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The influence of a nanosecond spark discharge on the oblique impact of a steel sphere with a flat iron plate was experimentally studied. It has been found that the angle of reflection of the sphere upon collision with the discharge becomes less than the angle of approach, while, in the case of a normal collision without a discharge, on the contrary, the angle of reflection is greater than the angle of approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. G. Coriolis, Théorie mathématique des effets du jeu de billard (Carilian-Goeury, Libraire-Editeur, Paris, 1835).

    Google Scholar 

  2. W. J. Stronge, Impact Mechanics (Cambridge Univ. Press, Cambridge, 2008).

    MATH  Google Scholar 

  3. C. Lakshmana Rao, V. Narayanamurthy, and K. R. Y. Simha, Applied Impact Mechanics (Wiley, Chichester, West Sussex, 2016).

    Google Scholar 

  4. S. M. Targ, Short Course of Theoretical Mechanics (Vysshaya Shkola, Moscow, 2010) [in Russian].

    MATH  Google Scholar 

  5. R. C. J. Howland and T. W. C. Dickson, London, Edinburgh, Dublin Philos. Mag. J. Sci. 2, 1091 (1926). https://doi.org/10.1080/14786442608564139

    Article  Google Scholar 

  6. N. Maw, J. R. Barber, and J. N. Fawcett, Wear 38, 101 (1976). https://doi.org/10.1016/0043-1648(76)90201-5

    Article  Google Scholar 

  7. G. Sundararajan and P. G. Shewmon, Int. J. Impact Eng. 6, 3 (1987). https://doi.org/10.1016/0734-743X(87)90003-0

    Article  Google Scholar 

  8. A. D. Lewis and R. J. Rogers, J. Sound Vibr. 125, 403 (1988). https://doi.org/10.1016/0022-460X(88)90250-7

  9. D. A. Gorham and A. H. Kharaz, Powder Technol. 112, 193 (2000). https://doi.org/10.1016/S0032-5910(00)00293-X

    Article  Google Scholar 

  10. M. Y. Louge and M. E. Adams, Phys. Rev. E 65, 021303 (2002). https://doi.org/10.1103/PhysRevE.65.021303

    Article  ADS  Google Scholar 

  11. H. Dong and M. H. Moys, Powder Technol. 161, 22 (2006). https://doi.org/10.1016/j.powtec.2005.05.046

    Article  Google Scholar 

  12. A. Rezaei, R. Verhelst, W. van Paepegem, and J. Degrieck, J. Sports Sci. 29, 1201 (2011). https://doi.org/10.1080/02640414.2011.587443

    Article  Google Scholar 

  13. R. Cross, Exp. Mech. 54, 1523 (2014). https://doi.org/10.1007/s11340-014-9938-3

    Article  Google Scholar 

  14. R. Cross, Am. J. Phys. 83, 238 (2015). https://doi.org/10.1119/1.4898312

    Article  ADS  Google Scholar 

  15. A. E. Dubinov, S. A. Sadovoy, and V. D. Selemir, Shock Waves 10, 73 (2000). https://doi.org/10.1007/s001930050180

    Article  ADS  Google Scholar 

  16. Q. Liu and Y. Zhang, J. Appl. Phys. 116, 153302 (2014). https://doi.org/10.1063/1.4898141

    Article  ADS  Google Scholar 

  17. E. V. Parkevich, M. A. Medvedev, G. V. Ivanenkov, et al., Plasma Sources Sci. Technol. 28, 095003 (2019). https://doi.org/10.1088/1361-6595/ab3768

    Article  ADS  Google Scholar 

  18. J. Huang, L. Yang, H. Zhang, et al., Chin. Phys. B 28, 055202 (2019). https://doi.org/10.1088/1674-1056/28/5/055202

    Article  ADS  Google Scholar 

  19. A. E. Dubinov, J. P. Kozhayeva, V. V. Golovanov, and V. D. Selemir, IEEE Trans. Plasma Sci. 47, 76 (2018). https://doi.org/10.1109/TPS.2018.2868443

    Article  ADS  Google Scholar 

  20. A. E. Dubinov and Yu. P. Kozhaeva, Tech. Phys. Lett. 45, 383 (2019). https://doi.org/10.1134/S1063785019040242

    Article  ADS  Google Scholar 

  21. Č. Kodejška, Mat.-Fiz.-Inform. 28, 201 (2019). http://mfi.upol.cz/files/28/2803/mfi_2803_201_206.pdf.

    Google Scholar 

  22. R. Nath, M. M. Patidar, N. K. Ghodke, et al., Asian J. Conv. Technol. 6 (2), 28 (2020). https://doi.org/10.33130/AJCT.2020v06i02.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Dubinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinov, A.E., Iskhakova, D.N. & Lyubimtseva, V.A. The Influence of a Nanosecond Spark Discharge on the Oblique Collision of a Steel Sphere with a Metal Plate. Tech. Phys. Lett. 48, 115–118 (2022). https://doi.org/10.1134/S106378502204006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378502204006X

Keywords:

Navigation