Skip to main content
Log in

Influence of Spark Discharges on Multiple Collisions of Two Steel Balls in Newton’s Cradle

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The influence of spark discharges on multiple collisions between two balls in Newton’s cradle has been studied experimentally. The collision-free motion of a single pendulum, as well as the motion of two pendulums, has been recorded. The pendulum oscillations have been found to decay nonmonotonically (the so-called beating effect has been observed) both in the presence and absence of collisions with spark discharges. When observing the damped oscillations of the pendulums, it has turned out that ball collisions increase the damping ratio, whereas spark discharges decrease it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. F. Herrmann and F. Seitz, Am. J. Phys. 50 (11), 977 (1982). https://doi.org/10.1119/1.12936

    Article  ADS  Google Scholar 

  2. D. R. Lovett, K. M. Moulding, and S. Anketell-Jones, Eur. J. Phys. 9 (4), 323 (1988). https://doi.org/10.1088/0143-0807/9/4/015

    Article  Google Scholar 

  3. R. Ehrlich, Phys. Teach. 34 (3), 181 (1996). https://doi.org/10.1119/1.2344392

    Article  ADS  Google Scholar 

  4. J. D. Gavenda and J. R. Edgington, Phys. Teach. 35 (7), 411 (1997). https://doi.org/10.1119/1.2344742

    Article  ADS  Google Scholar 

  5. V. Ceanga and Y. Hurmuzlu, J. Appl. Mech. 68 (4), 575 (2001). https://doi.org/10.1115/1.1344902

    Article  ADS  Google Scholar 

  6. S. Hutzler, G. Delaney, D. Weaire, and F. MacLeod, Am. J. Phys. 72 (12), 1508 (2004). https://doi.org/10.1119/1.1783898

    Article  ADS  Google Scholar 

  7. C. F. Cauld, Sci. Educ. 15 (6), 597 (2006). https://doi.org/10.1007/s11191-005-4785-3

    Article  Google Scholar 

  8. C. M. Donahue, C. M. Hrenya, A. P. Zelinskaya, and K. J. Nakagawa, Phys. Fluids 20 (11), 113301 (2008). https://doi.org/10.1063/1.3020444

  9. D. Kagan, Phys. Teach. 48 (3), 152 (2010). https://doi.org/10.1119/1.3317443

    Article  ADS  Google Scholar 

  10. R. Cross, Eur. J. Phys. 39 (2), 025001 (2018). https://doi.org/10.1088/1361-6404/aa9163

  11. R. Labbé, L. Vergara, and I. Olivares, Phys. Fluids 31 (5), 051703 (2019). https://doi.org/10.1063/1.5100041

  12. T. Kinoshita, T. Wenger, and D. S. Weiss, Nature 440 (7086), 900 (2006). https://doi.org/10.1038/nature04693

    Article  ADS  Google Scholar 

  13. Y. Tang, W. Kao, K.-Y. Li, S. Seo, K. Mallayya, M.  Rigol, S. Gopalakrishnan, and B. L. Lev, Phys. Rev. X 8 (2), 021030 (2018). https://doi.org/10.1103/PhysRevX.8.021030

  14. M. Schemmer, I. Bouchoule, B. Doyon, and J. Dubail, Phys. Rev. Lett. 122 (9), 090601 (2019). https://doi.org/10.1103/PhysRevLett.122.090601

  15. A. Sakes, L. Grandia, R. Lether, L. Steenstra, M.  C.  Valentijn, P. Breedveld, and J. W. Spronck, Med. Eng. Phys. 67 (1), 88 (2019). https://doi.org/10.1016/j.medengphy.2018.12.025

    Article  Google Scholar 

  16. A. E. Dubinov, S. A. Sadovoy, and V. D. Selemir, Shock Waves 10 (1), 73 (2000). https://doi.org/10.1007/s001930050180

    Article  ADS  Google Scholar 

  17. Q. Liu and Y. Zhang, J. Appl. Phys. 116 (15), 153302 (2014). https://doi.org/10.1063/1.4898141

  18. E. V. Parkevich, M. A. Medvedev, G. V. Ivanenkov, A. I. Khirianova, A. S. Selyukov, A. V. Agafonov, Ph. A. Korneev, S. Y. Gus’kov, and A. R. Mingaleev, Plasma Sources Sci. Technol. 28 (9), 095003 (2019). https://doi.org/10.1088/1361-6595/ab3768

  19. J. Huang, L. Yang, H. Zhang, L. Chen, and X. Wu, Chin. Phys. B 28 (1), 055202 (2019). https://doi.org/10.1088/1674-1056/28/5/055202

  20. A. E. Dubinov, J. P. Kozhayeva, V. V. Golovanov, and V. D. Selemir, IEEE Trans. Plasma Sci. 47 (1), 76 (2019). https://doi.org/10.1109/TPS.2018.2868443

    Article  ADS  Google Scholar 

  21. A. Beléndez, C. Pascual, D. I. Méndez, T. Beléndez, and C. Neipp, Rev. Bras. Ensino Fis. 29 (4), 645 (2007). https://doi.org/10.1590/S0102-47442007000400024

    Article  Google Scholar 

  22. X. Li, X. Liu, F. Zeng, X. Gou, and Q. Zhang, IEEE Trans. Plasma Sci. 43 (4), 1049 (2015). https://doi.org/10.1109/TPS.2015.2408607

    Article  ADS  Google Scholar 

  23. Z. Yang, H. Zhu, X. Yu, M. Zheng, and D. S.-K. Ting, IEEE Trans. Plasma Sci. 48 (1), 104 (2020). https://doi.org/10.1109/TPS.2019.2960154

    Article  ADS  Google Scholar 

  24. A. E. Dubinov, N. A. Pylayev, S. A. Sadovoy, and E. A. Sadchikov, IEEE Trans. Plasma Sci. 42 (10), 2648 (2014). https://doi.org/10.1109/TPS.2014.2324821

    Article  ADS  Google Scholar 

  25. Z. Wang, S. Yang, and S. Ye, J. Electrostat. 111 (1), 103576 (2012). https://doi.org/10.1016/j.elstat.2021.103576

  26. R. Hessel, A. C. Perinotto, R. A. M. Alfaro, and A. A. Freschi, Am. J. Phys. 74 (3), 176 (2006). https://doi.org/10.1119/1.2173276

    Article  ADS  Google Scholar 

  27. R. Cross, Eur. J. Phys. 42 (2), 025004 (2021). https://doi.org/10.1088/1361-6404/abc093

  28. G. Coriolis, Théorie Mathématique des Effets du Jeu de Billard (Carilian-Goeury, Libraire-Editeur, Paris, 1835).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Dubinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinov, A.E., Golovanov, V.V. & Lyubimtseva, V.A. Influence of Spark Discharges on Multiple Collisions of Two Steel Balls in Newton’s Cradle. Tech. Phys. 67, 191–196 (2022). https://doi.org/10.1134/S1063784222040016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222040016

Keywords:

Navigation