Skip to main content
Log in

The Effect of Compressive Preload on the Work Produced by Cu–Al–Ni Single Crystals in the Course of Burstlike Recovery of Shape-Memory Strain

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

We studied the ability of Cu 82.5 wt %–Al 13.5 wt %–Ni 4.0 wt % martensitic single crystals to perform work by moving a load with an impact during the shape-memory-strain recovery of reverse martensitic transformation. The dependence of this work on preload is studied. The transition to the impact mode occurs after the precompression of the crystal until the complete deformation of the shape memory (~9%) when the load exceeds the martensite detwinning stress by more than a factor of 2. Differential scanning calorimetry showed that, after such compression of the crystal to 200–250 MPa and more, the temperature range of the reverse martensitic transformation sharply narrows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. I. Nikolaev, P. N. Yakushev, G. A. Malygin, and S. A. Pul’nev, Tech. Phys. Lett. 36, 914 (2010). https://doi.org/10.1134/S1063785010100123

    Article  ADS  Google Scholar 

  2. V. I. Nikolaev, P. N. Yakushev, G. A. Malygin, A. I. Averkin, A. V. Chikiryaka, and S. A. Pulnev, Tech. Phys. Lett. 40, 123 (2014). https://doi.org/10.1134/S1063785014020126

    Article  ADS  Google Scholar 

  3. A. I. Averkin, P. N. Yakushev, E. V. Trofimova, G. P. Zograf, R. B. Timashov, S. A. Pulnev, S. B. Kustov, and V. I. Nikolaev, Fiz. Mekh. Mater. 22, 64 (2015). https://mpm.spbstu.ru/en/article/2015.38.9/.

  4. S. Yang, T. Omori, C. Wang, Y. Liu, M. Nagasako, J. Ruan, R. Kainuma, K. Ishida, and X. Liu, Sci. Rep. 6, 21754 (2016). https://doi.org/10.1038/srep21754

    Article  ADS  Google Scholar 

  5. X. Huang, K. Kumar, M. K. Jawed, A. M. Nasab, Z. Ye, W. Shan, and C. Majidi, Adv. Mater. Technol. 4, 1800540 (2019). https://doi.org/10.1002/admt.201800540

    Article  Google Scholar 

  6. V. I. Nikolaev, R. B. Timashov, S. A. Pulnev, L. I. Guzilova, P. N. Butenko, and S. I. Stepanov, Mater. Phys. Mech. 47, 59 (2021)

    Google Scholar 

  7. C. Picornell, J. Pons, and E. Cesari, Acta Mater. 49, 4221 (2001). https://doi.org/10.1016/S1359-6454(01)00308-1

    Article  ADS  Google Scholar 

  8. E. Cingolani, J. van Humbeeck, and M. Ahlers, Metall. Mater. Trans. A 30, 493 (1999). https://doi.org/10.1007/s11661-999-0041-9

    Article  Google Scholar 

  9. L. A. Matlakhova, E. C. Pereira, S. A. Pulnev, et al., Metals 10, 219 (2020). https://doi.org/10.3390/met10020219

    Article  Google Scholar 

  10. C. Picornell, J. Pons, A. Paulsen, J. Frenzel, V. Kaminskii, K. Sapozhnikov, J. van Humbeeck, and S. Kustov, Scr. Mater. 180, 23 (2020). https://doi.org/10.1016/j.scriptamat.2020.01.018

    Article  Google Scholar 

  11. E. S. Machlin and M. Cohen, Trans. AIME 191, 746 (1951).

  12. A. R. Entwistle, Metall. Trans. 2, 2395 (1971).

    Article  Google Scholar 

  13. O. B. Naimark, L. V. Filimonova, V. A. Barannikov, V. F. Leont’ev, and S. V. Uvarov, Phys. Mesomech. 4 (5), 13 (2001).

    Google Scholar 

  14. B. S. Kerner and V. V. Osipov, Sov. Phys. Usp. 32, 101 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Timashov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timashov, R.B., Yakushev, P.N., Pul’nev, S.A. et al. The Effect of Compressive Preload on the Work Produced by Cu–Al–Ni Single Crystals in the Course of Burstlike Recovery of Shape-Memory Strain. Tech. Phys. Lett. 48, 86–89 (2022). https://doi.org/10.1134/S1063785022030099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785022030099

Keywords:

Navigation