Skip to main content
Log in

Estimation of the Contributions of Various Mechanisms to the Deformation Resistance of Cu–12 at % Al Single Crystals

  • PHYSICAL FOUNDATIONS OF STRENGTH AND PLASTICITY
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The structural evolution of Cu–12 at % Al alloy single crystal during plastic compressive deformation is studied. Data on a flow curve, the stages of deformation, and the relation between the stages and the type of substructure are presented. The substructure parameters are quantitatively measured. The results are presented as a diagram of the fraction of substructure versus the dislocation density. The strain dependences of the distances between nonreacting intersections of dislocations, interdislocation reactions, obstacles, and dislocations are revealed. Special attention is paid to a quantitative estimation of the contributions of local stoppers and long-range elastic stress fields to the resistance to shear-forming dislocations and the contributions of slip and twinning to deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. I. V. Khomskaya, S. V. Razorenov, G. V. Garkushin, E. V. Shorokhov, and D.N. Abdullina, “Dynamic strength of submicrocrystalline and nanocrystalline copper fabricated by high-speed deformation,” Fiz. Met. Metalloved. 121 (4), 435–442 (2020).

    Google Scholar 

  2. V. I. Zel’dovich, N. Yu. Frolova, A. E. Heifets, I. V. Khomskaya, and E. V. Shorokhov, “Structural transformations in copper during high-rate deformation that occur during the convergence of a massive cylindrical shell under an explosion,” Fiz. Met. Metalloved. 121 (5), 494–500 (2020).

    Google Scholar 

  3. V. I. Zel’dovich, N. Yu. Frolova, A. E. Heifets, and I. V. Khomskaya, “Recrystallization during heating of copper subjected to high-rate deformation that occurs during the convergence of a massive cylindrical shell under an explosion,” Fiz. Met. Metalloved. 121 (6), 606–612 (2020).

    Google Scholar 

  4. N. Y. Zolotorevsky, V. V. Rybin, E. A. Ushanova, A. N. Matvienko, and I. V. Khomskaya, “Orientation-dependent microstructure development during high-rate shear deformation of copper,” Philos. Mag. 100 (11), 1499–1518 (2020).

    Article  CAS  Google Scholar 

  5. L. I. Trishkina, T. V. Cherkasova, N. A. Koneva, and E. V. Kozlov, “Influence of the grain size on the dislocation structure of copper-based alloys,” Fund. Probl. Sovr. Materialoved. 11 (4–2), 628–632 (2014).

  6. N. A. Koneva, L. I. Trishkina, and T. V. Cherkasova, “Influence of the stacking fault energy on the accumulation of dislocations during the plastic deformation of polycrystalline copper-based alloys,” Pis’ma Mater. 7 (3(27)), 282–286 (2017).

    Google Scholar 

  7. H. R. Lin, H. F. Shao, Z. J. Zhang, H. J. Yanga, J. C. Sun, L. B. Zhang, and Z. F. Zhang, “Stress relaxation behaviors and mechanical properties of precipitation strengthening copper alloys,” J. Alloys Compd. 861, 158537 (2021).

    Article  CAS  Google Scholar 

  8. Yu. V. Loginov and A. I. Khaimovich, “Optimum conditions of radial forging on the mandrel of thin-walled pipes made of copper-based alloys,” Kuzn.-Shtamp. Proizv. Obrab. Mater. Davleniem, No. 1, 22–26 (2014).

    Google Scholar 

  9. V. S. Myasnichenko and M. D. Starostenkov, “Dependence of the shape and structure of nanoclusters of the Cu–Au system on the cooling rate at different component concentrations,” Izv. Altai Gos. Univ., No. 1–1 (69), 169–173 (2011).

  10. V. S. Myasnichenko and M. D. Starostenkov, “Structural configuration of two-component nanoclusters of the Cu–Au system,” Fund. Probl. Sovr. Materialoved. 7 (4), 14–20 (2010).

    Google Scholar 

  11. Yu. V. Bebikhov, S. V. Dmitriev, A. V. Samsonov, and M. D. Starostenkov, “Modeling of the mismatch dislocation network at the copper/sapphire interface,” Vestn. SibGUTI, No. 3 (7), 23–31 (2009).

    Google Scholar 

  12. A. A. Chaplygina, P. A. Chaplygin, and M. D. Starostenkov “Effect of deformation on the structural-energy characteristics of a CuZn alloy,” Fund. Probl. Sovr. Materialoved. 17 (1), 56–62 (2020).

    Google Scholar 

  13. A. A. Chaplygina, A. I. Potekaev, P. A. Chaplygin, V. V. Kulagina, M. D. Starostenkov, and L. S. Grinke-vich, “Structural-phase transformations of a CuZn alloy during thermal cycling,” Izv. Vyssh. Uchebn. Zaved., Fiz. 59 (5), 3–8 (2016).

    Google Scholar 

  14. A. A. Chaplygina, P. A. Chaplygin, M. D. Starostenkov, M. A. Baranov, and A. I. Potekaev, “Structural-energy characteristics of a CuZn alloy with TAPB in the ❬100❭ direction,” Fund. Probl. Sovr. Materialoved. 13 (2), 155–161 (2016).

    Google Scholar 

  15. A. A. Vikarchuk, N. N. Gryzunova, A. M. Glezer, and S. V. Stepanov, “Technological control of the structure, surface morphology, and properties of electrolytic copper,” Izv. Vyssh. Uchebn. Zaved., Fiz. 61 (6(726)), 21–24 (2018).

    Google Scholar 

  16. N. D. Stepanov, A. V. Kuznetsov, G. A. Salishchev, G. I. Raab, and R. Z. Valiev, “Effect of cold rolling on microstructure and mechanical properties of copper subjected to ECAP with various numbers of passes,” Mater. Sci. Eng., A 554, 105–115 (2012).

    Article  CAS  Google Scholar 

  17. I. E. Permyakova, A. M. Glezer, M. I. Karpov, V. I. Vnukov, D. V. Shtanskii, M. V. Gorshenkov, and I. V. Shchetinin, “Amorphization of the structure and mechanical properties of copper–niobium nanolaminates under high-pressure torsion,” Izv. Vyssh. Uchebn. Zaved., Fiz. 61 (3(723)), 28–37 (2018).

    Google Scholar 

  18. S. D. Wu, Z. G. Wang, C. B. Jiang, G. Y. Li, I. V. Alexandrov, and R. Z. Valiev, “The formation of psb-like shear bands in cyclically deformed ultrafine grained copper processed by ECAP,” Scr. Mater. 48 (12), 1605–1609 (2003).

    Article  CAS  Google Scholar 

  19. A. N. Solov’ev, S. V. Starenchenko, Yu. V. Solov’eva, and V. A. Starenchenko, “Substructural transformations in Cu–12 at % Al single crystals with the [001] deformation axis,” Izv. Vyssh. Uchebn. Zaved., Fiz. 63 (7(751)), 115–119 (2020).

    Google Scholar 

  20. S. V. Starenchenko, Yu. V. Solov’eva, V. A. Starenchenko, and A. N. Solov’ev, “Influence of deformation and deforming stresses on the defect structure parameters of Cu–12 at % Al single crystals,” Izv. Vyssh. Uchebn. Zaved., Fiz. 64 (4(761)), 56–62 (2021).

    Google Scholar 

  21. A. N. Solov’ev, S. V. Starenchenko, and Yu. V. Solov’eva, “Evolution of the dislocation substructure in nickel single crystals and deformation mechanisms,” Izv. Vyssh. Uchebn. Zaved., Fiz. 60 (4), 73–78 (2017).

    Google Scholar 

  22. J. Schoek and R. Fridman, “The contribution of the dislocation forest to the flow stress,” Phys. Status Solidi B 53, 661–674 (1972).

    Article  Google Scholar 

  23. L. E. Popov, V. S. Kobytev, and T. A. Kovalevskaya, Plastic Deformation of Alloys (Metallurgiya, Moscow, 1984).

    Google Scholar 

Download references

Funding

This work was carried out within the framework of a state task of the Ministry of Science and Higher Education of the Russian Federation, project no. FEMN-2020-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Solov’eva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solov’eva, Y.V., Solov’ev, A.N., Gettinger, M.V. et al. Estimation of the Contributions of Various Mechanisms to the Deformation Resistance of Cu–12 at % Al Single Crystals. Russ. Metall. 2022, 1103–1108 (2022). https://doi.org/10.1134/S0036029522100263

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522100263

Keywords:

Navigation