Skip to main content
Log in

A Prototype Proton Undulator Linear Accelerator

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

One method to implement undulator acceleration is to move particles in a magnetic undulator, in which the particle spatial oscillations in the transverse direction are synchronized with the frequency of the transverse radio frequency field, which allows transferring the field energy to the accelerated particle. Since resonators that allow obtaining a uniform transverse field are structurally simpler than those with a periodically varying longitudinal radio frequency field, undulator accelerators are an attractive alternative to traditional accelerators. Although the physical fundamentals of such accelerators were described earlier in the literature, the problem of creating their prototypes still remains unsolved. In this paper, a practical description of a prototype proton undulator linear accelerator based on this principle, which is under development at RadiaBeam Technologies LLC (United States) is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. I. M. Kapchinskii, Theory of Linear Resonance Accelerators (Energoizdat, Moscow, 1982) [in Russian].

    Google Scholar 

  2. I. M. Kapchinskii and V. A. Teplyakov, Prib. Tekh. Eksp., No. 2, 19 (1970).

  3. A. Schempp, in Proceedings of the conference LINAC08 (Victoria, BC, Canada, 2008), p. 41.

  4. E. Fagotti, L. Antoniazzi, L. Bellan, D. Bortolato, M. Comunian, A. Facco, M. Giacchini, F. Grespan, M. Montis, A. Palmieri, A. Pisent, F. Scantamburlo, G. Pruneri, M. Weber, B. Bolzon, et al., in Proceedings of the IPAC 2018 Conference, Vancouver, BC, Canada, 2018, p. 2902. https://doi.org/10.18429/JACoW-IPAC2018-THXGBF2

  5. N. V. Avrelin, V. S. Dyubkov, E. S. Masunov, S. M. Polozov, and A. L. Sitnikov, in Proceedings of the EPAC08, Genoa, Italy, 2008, p. 3455.

  6. A. S. Plastun and P. N. Ostroumov, Phys. Rev. Accel. Beams 21, 030102 (2018). https://doi.org/10.1103/PhysRevAccelBeams.21.030102

    Article  ADS  Google Scholar 

  7. R. B. Palmer, J. Appl. Phys. 43, 3014 (1972). https://doi.org/10.1063/1.1661650

    Article  ADS  Google Scholar 

  8. G. Brautti, T. Clauser, T. Rainó, and V. Stagno, Nucl. Instrum. Methods Phys. Res. 153, 357 (1978). https://doi.org/10.1016/0029-554X(78)90972-2

    Article  ADS  Google Scholar 

  9. E. D. Courant, C. Pellegrini, and W. Zakowicz, Phys. Rev. A 32, 2813 (1985). https://doi.org/10.1103/physreva.32.2813

    Article  ADS  Google Scholar 

  10. P. Musumeci, S. Ya. Tochitsky, S. Boucher, C. E. Clayton, A. Doyuran, R. J. England, C. Joshi, C. Pellegrini, J. E. Ralph, J. B. Rosenzweig, C. Sung, S. Tolmachev, G. Travish, A. A. Varfolomeev, A. A. Varfolomeev, Jr., T. Yarovoi, and R. B. Yoder, Phys. Rev. Lett. 94, 154801 (2005). https://doi.org/10.1103/PhysRevLett.94.154801

    Article  ADS  Google Scholar 

  11. E. S. Masunov, Tech. Phys. 46, 1433 (2001). https://doi.org/10.1134/1.1418508

    Article  Google Scholar 

  12. E. S. Masunov, Sov. Tech. Phys. 35, 962 (1990).

    Google Scholar 

  13. E. S. Masunov, S. M. Polozov, and A. S. Roshal, Rad. Phys. Chem. 61, 491 (2001). https://doi.org/10.1016/S0969-806X(01)00311-5

    Article  ADS  Google Scholar 

  14. N. V. Avreline, S. M. Polozov, and A. G. Ponomarenko, J. Phys.: Conf. Ser. 1350, 012055 (2019). https://doi.org/10.1088/1742-6596/1350/1/012055

    Article  Google Scholar 

  15. N. V. Avreline, S. V. Kutsaev, A. N. Avreline, and A. Murokh, Laser Phys. Lett. 18, 055402 (2021). https://doi.org/1612-202X/18/5/055402

  16. E. S. Masunov, in Proceedings of the 11th All-Union Workshop on Charged Particle Accelerators (Dubna, 1989), p. 121.

  17. I. V. Amirkhanov, G. A. Karamysheva, I. N. Kiyan, and J. Sulikowski, Phys. Part. Nucl. Lett. 12, 428 (2015). https://doi.org/10.1134/S1547477115030036

    Article  Google Scholar 

  18. C. Zhu, R. H. Byrd, and P. Lu, ACM Trans. Math. Software 23, 550 (1997). https://doi.org/10.1145/279232.279236

    Article  MathSciNet  Google Scholar 

  19. S. V. Kutsaev, A. S. Plastun, R. Agustsson, D. Bazin, N. Bultman, P. N. Ostroumov, A. Y. Smirnov, K. Taletski, O. Tarasov, and R. G. T. Zegers, EPJ Tech. Instrum. 7, 4 (2020). https://doi.org/10.1140/epjti/s40485-020-00056-1

    Article  Google Scholar 

  20. W. Peter, R. J. Faehl, A. Kadish, and L. E. Thode, IEEE Trans. Nucl. Sci. 30, 3454 (1983). https://doi.org/10.1109/TNS.1983.4336689

    Article  ADS  Google Scholar 

  21. S. V. Kutsaev, A. Yu. Smirnov, R. Agustsson, D. Chao, S. Lynam, B. Mustapha, and S. Sharamentov, Nucl. Instrum. Methods Phys. Res., Sect. A 905, 149 (2018). https://doi.org/10.1016/j.nima.2018.07.054

    Article  Google Scholar 

  22. N. A. Vinokurov, O. A. Shevchenko, and V. G. Tcheskidov, Phys. Rev. ST Accel. Beams 14, 040701 (2011). https://doi.org/10.1103/PhysRevSTAB.14.040701

    Article  ADS  Google Scholar 

Download references

Funding

This paper was supported by the U.S. Department of Energy, project no. DE-SC0020559.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kutsaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutsaev, S.V., Avreline, N.V., Avreline, A.N. et al. A Prototype Proton Undulator Linear Accelerator. Tech. Phys. Lett. 47, 761–765 (2021). https://doi.org/10.1134/S1063785021080083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785021080083

Keywords:

Navigation