Skip to main content

Shaping Photon Beams with Undulators and Wigglers

  • Reference work entry
  • First Online:
Synchrotron Light Sources and Free-Electron Lasers
  • 2207 Accesses

Abstract

Periodic magnetic structures, i.e., undulators and wigglers, have been used for nearly 40 years as sources of brilliant synchrotron radiation. Today, sophisticated undulator designs provide many degrees of freedom such as photon beam energy, variable polarization, and orbital angular momentum. Specific designs efficiently suppress higher orders or reduce the on-axis power density. All tuning parameters are required to be freely accessible to users. Still, the majority of undulators are based on permanent magnets with a clear trend to short-period in-vacuum and cryogenically cooled systems. The development of superconducting undulators is rapidly progressing, and high-quality devices are operated at two multiuser facilities. Similar designs are used for storage rings and free-electron lasers, though the field quality requirements are different. Today, the optimization of a specific experiment follows a global approach. This includes not only the undulator design itself but also local lattice modifications to cope with ambitious designs, elaborate tracking schemes to estimate the impact on the dynamic aperture, and last but not least radiation propagation tools which transport a realistic photon beam phase space to the sample. This chapter summarizes the theory of undulator radiation and reviews the technological realization of undulators and wigglers. Operational issues are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • D. Alferov et al., Undulator radiation. Sov. Phys. Tech. Phys. 18(10), 1336–1339 (1974)

    ADS  Google Scholar 

  • E. Allaria et al., Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photonics 6, 699–704 (2012)

    Article  ADS  Google Scholar 

  • E. Allaria et al., Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser. Phys. Rev. X.4, 041040-1-15 (2014)

    Google Scholar 

  • M. Altarelli, The European X-ray free-electron laser facility in Hamburg. Nucl. Instrum. Methods Phys. Res. B 269, 2845–2849 (2011)

    Article  ADS  Google Scholar 

  • A. Anashin et al., BINP Preprint 84-111 (1984)

    Google Scholar 

  • D. Arbelaez et al., Magnetic field correction concepts for superconducting undulators. IEEE Trans. Appl. Supercond. 23(3), 4100104-1-4 (2013)

    Google Scholar 

  • D. Arbelaez et al., Magnetic field correction methods for hybrid permanent magnet and superconducting undulators. Synchrotron Radiat. News 31(3), 9–13 (2018)

    Article  MathSciNet  Google Scholar 

  • A. Artamonov et al., First results on the work with a superconducting ‘snake’ at the VEPP-3 storage ring. Nucl. Instrum. Methods 177(1), 239–246 (1980a)

    Article  ADS  Google Scholar 

  • A. Artamonov et al., The first experience with an optical klystron installed on the VEPP-3 storage ring. Nucl. Instrum. Methods 177, 247–252 (1980b)

    Article  ADS  Google Scholar 

  • R. Bachrach et al., The SSRL insertion device beamline ‘wunder’, in Proc. SPIE, Insertion Devices for Synchrotron Sources, 1985, vol. 582, pp. 251–267 (1986)

    Google Scholar 

  • J. Bahrdt, E. Gluskin, Cryogenic permanent magnet and superconducting undulators. Nuclt. Instrum. Methods Phys. Res. Sect. A 907, 149–168 (2018)

    Article  ADS  Google Scholar 

  • J. Bahrdt, Y. Ivanyushenkov, Effects of geometrical errors on the field quality in a planar superconducting undulator, in Proc. of IPAC, New Orleans, pp. 708–710 (2012)

    Google Scholar 

  • J. Bahrdt, S. Sasaki, Challenges of quasiperiodic APPLE undulators, in Proc. IPAC, New Orleans, pp. 705–707 (2012)

    Google Scholar 

  • J. Bahrdt, G. Wüstefeld, Symplectic tracking and compensation of dynamic field integrals in complex undulator structures. Phys. Rev. ST Accel. Beams 14, 040703-1–27 (2011)

    Google Scholar 

  • J. Bahrdt, Y. Yvanyushenkov, Short period undulators for storage rings and free electron lasers. J. Phys. Conf. Per. SRI, Lyon, 425, 032001-1-6 (2013)

    Google Scholar 

  • J. Bahrdt et al., Circularly polarized synchrotron radiation from the crossed undulator at BESSY. Rev. Sci. Instrum. 63(1), 339–342 (1992)

    Article  ADS  Google Scholar 

  • J. Bahrdt et al., Elliptically polarizing insertion devices at BESSY II. Nucl. Instrum. Methods Phys. Res. A 467–468, 21–29 (2001a)

    Article  ADS  Google Scholar 

  • J. Bahrdt et al., A quasi-periodic hybrid undulator at BESSY II. Nucl. Instrum. Methods Phys. Res. A 467–468, 130–133 (2001b)

    Article  ADS  Google Scholar 

  • J. Bahrdt et al., Undulators for the BESSY soft-X-ray FEL, in Proc. FEL Conf., Trieste, pp. 610–613 (2004a)

    Google Scholar 

  • J. Bahrdt et al., Magnetic field optimization of permanent magnet undulators for arbitrary polarization. Nucl. Instrum. Methods Phys. Res. A 516, 575–585 (2004b)

    Article  ADS  Google Scholar 

  • J. Bahrdt et al., Active shimming of the dynamic multipoles of the BESSY UE112 APPLE undulator, in Proc. EPAC, Genoa, pp. 2222–2224 (2008)

    Google Scholar 

  • J. Bahrdt et al., Universal mode operation of the BESSY II UE112 APPLE undulator, in Proc. PAC, Vancouver, pp. 1162–1164 (2009)

    Google Scholar 

  • J. Bahrdt et al., Cryogenic undulator for a table top FEL, in AIP Conf. Proc., SRI 2009, Melbourne, vol. 1234, pp. 499–502 (2010a)

    Google Scholar 

  • J. Bahrdt et al., Compensation of beam line polarizing effects at UE112 of BESSY II, in AIP Conf. Proc., SRI 2009 vol. 1234, pp. 335–338 (2010b)

    Google Scholar 

  • J. Bahrdt et al., Performance of the PETRA III APPLE II undulator, in Proc. IPAC, San Sebastian, pp. 3254–3256 (2011a)

    Google Scholar 

  • J. Bahrdt et al., PHASE, a universal software package for the propagation of time-dependent light pulses along grazing incidence optics, in Proc. SPIE, San Diego, vol. 8141, pp. 81410E-1-10 (2011b)

    Google Scholar 

  • J. Bahrdt et al., First observation of photons carrying orbital angular momentum in undulator radiation. Phys. Rev. Lett. 111, 034801-1-5 (2013)

    Google Scholar 

  • J. Bahrdt et al., Propagation of coherent light pulses with PHASE, in Proc. SPIE, vol. 9209, pp. 920908-1-18 (2014)

    Google Scholar 

  • J. Bahrdt et al., Measurements of the lattice modifications for the cryogenic undulator CPMU-17, in Proc. IPAC, Busan, pp. 4031–4034 (2016)

    Google Scholar 

  • J. Bahrdt et al., In-vacuum APPLE II undulator, in Proc. IPAC 2018, Vancouver, pp. 4114–4116 (2018a)

    Google Scholar 

  • J. Bahrdt et al., In-Vacuum APPLE II undulator with force compensation, AIP Conference Proceedings 2054, 030031 (2019)

    Google Scholar 

  • C. Baribeau et al., Simulated and measured magnetic performance of a double APPLE-II undulator at the Canadian Light Source, in Proc. IPAC 2016, Busan, pp. 425–427 (2016)

    Google Scholar 

  • L. Barkov et al., A proposal to install a superconducting wiggler magnet on the storage ring VEPP-3 for generation of the synchrotron radiation. Nucl. Instrum. Methods 152, 23–29 (1978)

    Article  ADS  Google Scholar 

  • M. Barthes et al., The asymmetric hybrid wiggler at Orsay. IEEE Trans. Magn. 28(1), 601–604 (1992)

    Article  ADS  Google Scholar 

  • K. Batchelor et al., Status of the visible free-electron laser at the Brookhaven Accelerator Test Facility. Nucl. Instrum. Methods Phys. Res. A 318, 159–164 (1992)

    Article  ADS  Google Scholar 

  • A. Batrakov et al., Magnetic measurements of the 10 T superconducting wiggler for the SPring-8 storage ring. Nucl. Instrum. Methods Phys. Res. A 467–468, 190–193 (2001)

    Article  ADS  Google Scholar 

  • A. Batrakov et al., Elliptical undulators HU256 for synchrotron SOLEIL, in AIP Conf. Proc., SRI 2006, Daegu, vol. 879, pp. 396–399 (2007)

    Google Scholar 

  • M. Bazin, Design of an undulator for A.C.O. and its possible use as free electron laser. Nucl. Instrum. Methods 172, 61–65 (1980)

    Article  ADS  Google Scholar 

  • C. Bazin et al., First results of a superconducting undulator on the ACO storage ring. J. Phys. Lett. 41(23), 547–550 (1980)

    Article  Google Scholar 

  • C. Benabderrahmane et al., Nd2Fe14B and Pr2Fe14B magnets characterisation and modelling for cryogenic permanent magnet undulator applications. Nucl. Instrum. Methods Phys. Res. A 669, 1–6 (2012)

    Article  ADS  Google Scholar 

  • C. Benabderrahmane et al., Development and operation of a Pr2Fe14B based cryogenic permanent magnet undulator for a high spatial resolution x-ray beam line. Phys. Rev. ST Accel. Beams 20, 033201-1-14 (2017)

    Google Scholar 

  • C. Benabderrahmane et al., Status of the ESRF-EBS magnets, in Proc. IPAC, Vancouver, pp. 2648–2651 (2018)

    Google Scholar 

  • S. Benson et al., X-ray sources by energy recovered linacs and their needed R&D. Nucl. Instrum. Methods Phys. Res. A 637(1), 1–11 (2011)

    Article  ADS  Google Scholar 

  • I. Ben-Zvi et al., Performance of a superconducting, high field subcentimeter undulator. Nucl. Instrum. Methods Phys. Res. A 318, 781–788 (1992)

    Article  ADS  Google Scholar 

  • D. Berger et al., A Superconducting 7 T multipole wiggler for BESSY II: main challenges and first measurements, in Proc. EPAC, Paris, pp. 2595–2597 (2002)

    Google Scholar 

  • M. Berndt et al., Initial operation of SSRL wiggler in SPEAR. IEEE Trans. Nucl. Sci. NS-26(3), 3812–3815 (1979)

    Article  ADS  Google Scholar 

  • D. Bilderbeck et al., Energy recovery linac (ERL) coherent hard x-ray sources. New J. Phys. 12, 035011 (2010)

    Article  ADS  Google Scholar 

  • T. Bizen, Brief review of the approaches to elucidate the mechanism of the radiation-induced demagnetization, in Proc. ERL, Tsukuba, pp. 121–126 (2011)

    Google Scholar 

  • T. Bizen et al., Development of in-vacuum revolver undulator, in AIP Conf. Proc., SRI 2003, vol. 705, pp. 175–178 (2004)

    Google Scholar 

  • T. Bizen et al., Radiation-induced magnetization reversal causing a large flux loss in undulator permanent magnets. Sci. Rep. 6, 37937-1-9 (2016)

    Google Scholar 

  • T. Bizen, K. Ryota, T. Tanaka, Enhancing the radiation resistance of undulator permanent magnets by tilting the easy axis of magnetization. Phys. Rev. Lett. 121, 124801-1-5 (2018)

    Google Scholar 

  • J. Blewett, Radiation losses in the induction electron accelerator. Phys. Rev. 69(3–4), 87–95 (1946)

    Article  ADS  Google Scholar 

  • B. Bobbs et al., In search of a meaningful field-error specification for wigglers. Nucl. Instrum. Methods Phys. Res. A 296, 574–578 (1990)

    Article  ADS  Google Scholar 

  • M. Born, E. Wolf, Principles of Optics, 6th edn. (Pergamon Press, Oxford/New York/Beijing etc., 1980)

    MATH  Google Scholar 

  • V. Borovikov et al., Superconducting 7 T wiggler for LSU CAMD. J. Synchrotron Radiat. 5, 440–442 (1998)

    Article  Google Scholar 

  • V. Borovikov et al., Superconducting 7 T wave length shifter for BESSY-II. Nucl. Instrum. Methods Phys. Res. A 467–468, 181–184 (2001)

    Article  ADS  Google Scholar 

  • W. Brown Jr., Virtues and weakness of the domain concept. Rev. Mod. Phys. 17(1), 15–20 (1945)

    Article  ADS  Google Scholar 

  • M. Calvi et al., Commissioning results of the U14 cryogenic undulator at SLS. J. Phys. Conf. Ser. 425, 032017-1-4 (2013)

    Google Scholar 

  • M. Calvi et al., Transverse gradient in Apple-type undulators. J. Synchrotron Radiat. 24, 600–608 (2017)

    Article  Google Scholar 

  • M. Calvi et al., Magnetic assessment and modelling of the Aramis undulator beamline. J. Synchrotron Radiat. 25, 686–705 (2018)

    Article  Google Scholar 

  • R. Carr, Adjustable phase insertion devices as X-ray sources. Nucl. Instrum. Methods Phys. Res. A 306, 391–396 (1991)

    Article  ADS  Google Scholar 

  • S. Casalbuoni et al., Generation of x-ray radiation in a storage ring by a superconductive cold-bore in-vacuum undulator. Phys. Rev. ST Accel. Beams 9, 010702-1-6 (2006)

    Google Scholar 

  • S. Casalbuoni et al., Training and magnetic field measurements at the ANKA superconducting undulator. IEEE Trans. Appl. Supercond. 21(3), 1760–1763 (2011)

    Article  ADS  Google Scholar 

  • S. Casalbuoni et al., Calculated spectra from magnetic field measurements of 1.5m superconducting undulator coils, in Proc. IPAC, New Orleans, pp. 711–713 (2012)

    Google Scholar 

  • S. Casalbuoni et al., Overview of superconducting undulator development at ANKA, in AIP Conf. Proc., vol. 1741, pp. 220002-1-4 (2016)

    Google Scholar 

  • S. Casalbuoni et al., Superconducting undulators: from development towards a commercial product. Synchrotron Radiat News 31(3), 24–28 (2018)

    Article  Google Scholar 

  • J. Chavanne, P. Elleaume, Insertion devices at the ESRF. Rev. Sci. Instrum. 66(2), 1868–1871 (1995a)

    Article  ADS  Google Scholar 

  • J. Chavanne, P. Elleaume, Undulator and wiggler shimming. Synchrotron Radiat. News 8(1), 18–22 (1995b)

    Article  Google Scholar 

  • J. Chavanne, P. Elleaume, P. Van Vaerenbergh, A novel fast switching linear/helical undulator, in Proc. EPAC, Stockholm, pp. 317–319 (1998a)

    Google Scholar 

  • J. Chavanne, P. Elleaume, P. Van Vaerenbergh, Development of quasiperiodic undulators at the ESRF, in Proc. EPAC, Stockholm, pp. 2213–2215 (1998b)

    Google Scholar 

  • J. Chavanne, P. Van Vaerenbergh, P. Elleaume, A 3 T asymmetric permanent magnet wiggler. Nucl. Instrum. Methods Phys. Res. A 421, 352–360 (1999)

    Article  ADS  Google Scholar 

  • J. Chavanne et al., Recent achievements and future prospects of ID activities at the ESRF, in Proc. EPAC, Vienna, pp. 2346–2348 (2000)

    Google Scholar 

  • J. Chavanne, C. Penel, P. Elleaume, Development and operation of a prototype cryogenic permanent magnet undulator at the ESRF. Synchrotron Radiat. News 22(4), 34–37 (2009)

    Article  Google Scholar 

  • J. Chavanne et al., Recent developments in insertion devices at the ESRF: working toward diffraction-limited storage rings. Synchrotron Radiat. News 28(3), 15–18 (2015)

    Article  Google Scholar 

  • O. Chubar, P. Elleaume, Accurate and efficient computation of synchrotron radiation in the near field region, in Proc. EPAC, Stockholm, pp. 1177–1179 (1998)

    Google Scholar 

  • O. Chubar, P. Elleaume, J. Chavanne, A three-dimensional magnetostatics computer code for insertion devices. J. Synchrotron Radiat. 5, 481–484 (1998)

    Article  Google Scholar 

  • O. Chubar et al., Development of partially-coherent wavefront propagation simulation methods for 3rd and 4th generation synchrotron radiation sources, in Proc. SPIE, vol. 8141, pp. 07-1-10 (2011)

    Google Scholar 

  • O. Chubar et al., Spectral performance of segmented adaptive-Gap In-vacuum undulators for storage rings, in Proc. IPAC, New Orleans, pp. 765–767 (2012)

    Google Scholar 

  • O. Chubar et al., Segmented adaptive-Gap In-vacuum undulators – potential solution for beamlines requiring high hard X-ray flux and brightness in medium energy synchrotron sources? J. Phys. Conf. Ser. 425, 032005-1-4 (2013)

    Google Scholar 

  • O. Chubar et al., Spectrum-based alignment of in-vacuum undulators in a low-emittance storage ring. Syncrotron Radiat. News 31(3), 4–8 (2018)

    Article  Google Scholar 

  • T.-Y. Chung et al., Twin-helix undulator for round beam-related light sources. Synchrotron Radiat. News 31(3), 14–17 (2018)

    Article  Google Scholar 

  • J. Clarke, The science and technology of undulators and wigglers (Oxford University Press, New York, 2004). ISBN 978-0-19-850855-7

    Google Scholar 

  • M.-E. Couprie et al., An application of laser–plasma acceleration: towards a free-electron laser amplification. Plasma Phys. Control. Fusion 58, 034020-1-11 (2016)

    Google Scholar 

  • M. Curtin, S. Segall, P. Diament, Design of large-useful-bore permanent-magnet helical wiggler. Nucl. Instrum. Methods Phys. Res. A 237, 395–400 (1985)

    Article  ADS  Google Scholar 

  • I. Davidyuk et al., Modeling and designing a variable-period and variable-pole-number undulator. Phys. Rev. ST Accel. Beams 19, 020701-1-9 (2016)

    Google Scholar 

  • I.V. Davidyuk, O.A. Shevchenko, V.G. Tcheskidov, N.A. Vinokurov, Results of test of prototype of variable period undulator. Nucl. Instrum. Methods Phys. Res. Sect. A 871, 77–82 (2017)

    Article  ADS  Google Scholar 

  • D. Deacon et al., First operation of a free-electron laser. Phys. Rev. Lett. 38(16), 892–894 (1977)

    Article  ADS  Google Scholar 

  • H. Delsim-Hashemi et al., Undulator system for a seeded FEL experiment at FLASH, in Proc. PAC, Vancouver, pp. 2423–2425 (2009)

    Google Scholar 

  • D. Dietderich et al., Fabrication of a short-period Nb3Sn superconducting undulator. IEEE Trans. Appl. Supercond. 17(2), 1243–1246 (2007)

    Article  ADS  Google Scholar 

  • Y. Ding, H. Zhirong, Statistical analysis of crossed undulator for polarization control in self-amplified spontaneous emission free electron laser. Phys. Rev. ST Accel. Beams 11, 030702-1-6 (2008)

    Google Scholar 

  • B. Diviacco, R. Walker, Fields and trajectories in some new types of permanent magnet helical undulators. Nucl. Instrum. Methods Phys. Res. A 292, 517–529 (1990)

    Article  ADS  Google Scholar 

  • B. Diviacco, R. Walker, Recent advances in undulator performance optimization. Nucl. Instrum. Methods Phys. Res. A 368, 522–532 (1996)

    Article  ADS  Google Scholar 

  • B. Diviacco et al., Construction of elliptical undulators for ELETTRA, in Proc. EPAC, Stockholm, pp. 2216–2218 (1998)

    Google Scholar 

  • B. Diviacco et al., Design of a figure-8 undulator for ELETTRA, in Proc. EPAC, Paris, pp. 2610–2612 (2002)

    Google Scholar 

  • K. Durst, H. Kronmüller, Determination of the intrinsic magnetic material parameters of Nd2Fe14B from magnetic measurements of sintered Nd15Fe77B8 magnets. J. Magn. Magn. Mater. 59, 86–94 (1986)

    Article  ADS  Google Scholar 

  • EBS Storage Ring Technical Report, pp. 1–352, 2018. https://www.esrf.eu/files/live/sites/www/files/com%20photos/About%20Us/EBS-TECHREPORT-reduced.pdf

  • T. Eichner et al., Miniature magnetic devices for laser-based table-top free-electron lasers. Phys. Rev. ST Accel. Beams 10, 082401-1-9 (2007)

    Google Scholar 

  • D. Einfeld, M. Plesko, J. Schaper, First multi-bend achromat lattice consideration. J. Synchrotron Radiat. 21, 856–861 (2014)

    Article  Google Scholar 

  • F. Elder, R. Langmuir, H. Pollock, Radiation from electrons accelerated in a synchrotron. Phys. Rev. 74(1), 52–58 (1948)

    Article  ADS  Google Scholar 

  • L. Elias et al., Observation of stimulated emission of radiation by relativistic electrons in a spatially periodic transverse magnetic field. Phys. Rev. Lett. 36(13), 717–720 (1976)

    Article  ADS  Google Scholar 

  • P. Elleaume, A new approach to the electron beam dynamics in undulators and wigglers, in Proc. EPAC, Berlin, pp. 661–663 (1992)

    Google Scholar 

  • P. Elleaume, HELIOS: a new type of linear/helical undulator. J. Synchrotron Radiat. 1, 19–26 (1994)

    Article  Google Scholar 

  • P. Elleaume, J. Chavanne, A new powerful flexible linear/helical undulator for soft X-rays. Nucl. Instrum. Methods Phys. Res. A 304, 719–724 (1991)

    Article  ADS  Google Scholar 

  • P. Elleaume, O. Chubar, J. Chavanne, Computing 3D magnetic fields from insertion devices, in Proc. PAC, Vancouver, pp. 3509–3511 (1997)

    Google Scholar 

  • P. Elleaume, J. Chavanne, B. Faatz, Design considerations for a 1 Å SASE undulator. Nucl. Instrum. Methods Phys. Res. A 455, 503–523 (2000)

    Article  ADS  Google Scholar 

  • L. Emery, M. Borland, Possible long-term improvements to the advanced photon source, in Proc. PAC, pp. 256–258 (2003)

    Google Scholar 

  • P. Emma et al., First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 4, 641–647 (2010)

    Article  ADS  Google Scholar 

  • V. Epp, G. Razina, Radiation in a wiggler with sinusoidal magnetic field. Nucl. Instrum. Methods Phys. Res. A 307, 562–567 (1991)

    Article  ADS  Google Scholar 

  • M. Eriksson et al., Commissioning of the MAX IV light source, in Proc. IPAC 2016, Busan, pp. 11–15 (2016)

    Google Scholar 

  • R. Follath, The versatility of collimated plane grating monochromators. Nucl. Instrum. Methods Phys. Res. A 467–468, 418–425 (2001)

    Article  ADS  Google Scholar 

  • G. Foster, Experience with permanent magnets in the FERMILAB 8 GeV line and recycler ring, in Proc. EPAC, Stckholm, pp. 189–193 (1998)

    Google Scholar 

  • G. Foster et al., Permanent magnet design for the FERMILAB main injector recycler ring, in Proc. PAC, Dalla, pp. 1298–1300 (1995)

    Google Scholar 

  • J. Fuhao et al., Design and performance of the APPLE-knot undulator. J. Synchrotron Radiat. 22, 901–907 (2015)

    Article  Google Scholar 

  • M. Fujisawa et al., Quasi-periodic grating for a monochromator at the Photon Factory BL19B. Nucl. Instrum. Methods Phys. Res. A 467–468, 313–316 (2001)

    Article  ADS  Google Scholar 

  • A. Gaupp et al., Carbon K-edge polarimetry with Cr/Sc multilayers. J. Phys. Conf. Ser. SRI 2012 425, 122013-1-4 (2013)

    Google Scholar 

  • G. Geloni, V. Kocharyan, E. Saldin, Improvement of the crossed undulator design for effective circular polarization control in X-ray FELs. 1–16 (2011). arXiv:1101.4085v1.

    Google Scholar 

  • G. Geloni, E. Saldin, E. Schneidmiller, M. Yurkov, Transverse coherence properties of X-ray beams in third-generation synchrotron radiation sources. 1–71 (2013). http://arxiv.org/abs/0801.4523

  • G. Geloni, V. Kocharyan, E. Saldin, Brightness of synchrotron radiation from undulators and bending magnets. J. Synchrotron Radiat. 22, 288–316 (2014)

    Article  Google Scholar 

  • V. Ginzburg, Izv. Akad. Nauk. SSSR, Ser. Fiz.11(2), 165 (1947)

    Google Scholar 

  • D. Givord et al., Magnetic properties of Y2Fe14B and Nd2Fe14B single crystals. Solid State Commun. 51(11), 857–860 (1984)

    Article  ADS  Google Scholar 

  • E. Gluskin, APS insertion devices: recent developments and results. J. Synchrotron Radiat. 5, 189–195 (1998)

    Article  Google Scholar 

  • E. Gluskin et al., First experiments with SR from a 75 kG superconducting wiggler on the VEPP-2M storage ring. Nucl. Instrum. Methods Phys. Res. A 246, 41–44 (1986)

    Article  ADS  Google Scholar 

  • E. Gluskin et al., The elliptical multipole wiggler project, in Proc. PAC, Dallas, pp. 1426–1428 (1995)

    Google Scholar 

  • E. Gluskin et al., An electromagnetic helical undulator for polarized X-rays, in AIP Conf. Proc., vol. 521, pp. 344–347, 2000

    Google Scholar 

  • S. Gottschalk et al., Wiggler error reduction through shim tuning. Nucl. Instrum. Methods Phys. Res. A 296, 579–587 (1990)

    Article  ADS  Google Scholar 

  • S. Gottschalk, D. C. Quimby and W. D. Kimura, Gap-tapered undulators for high-photon-energy synchrotron radiation production, in AIP Conf. Proc., vol. 521, pp. 348–353, 2000

    Google Scholar 

  • J. Goulon, P. Elleaume, D. Raoux, Special multipole wiggler design producing circularly polarized synchrotron radiation. Nucl. Instrum. Methods Phys. Res. A 254, 192–201 (1987)

    Article  ADS  Google Scholar 

  • A. Grau et al., First experimental demonstration of period length switching for superconducting insertion devices. IEEE Trans. Appl. Supercond. 21(3), 1596–1599 (2011)

    Article  ADS  Google Scholar 

  • M. Green et al., Design, testing and commissioning of an electromagnetic undulator for SRC, in Proc. PAC, New York, pp. 2659–2661 (1999)

    Google Scholar 

  • W. Gudat et al., An undulator/multipole wiggler for the BESSY storage ring. Nucl. Instrum. Methods Phys. Res. A 246, 50–53 (1986)

    Article  ADS  Google Scholar 

  • U. Hahn et al., A new vacuum chamber with variable gap for the wiggler W2 at the storage ring Doris II, in Proc. Int. Vac. Congr. IVC-11, Cologne (1989)

    Google Scholar 

  • K. Halbach, Application of conformal mapping to evaluation and design of magnets containing iron with non-linear B(H) characteristics. Nucl. Instrum. Methods 64(3), 278–284 (1968)

    Article  ADS  Google Scholar 

  • K. Halbach, First order perturbation effects in iron-dominated two-dimensional symmetrical multipoles. Nucl. Instrum. Methods Phys. Res. 74, 147–164 (1969)

    Article  ADS  Google Scholar 

  • K. Halbach, Design of permanent multipole magnets with oriented rare earth cobalt material. Nucl. Instrum. Methods 169, 1–10 (1980)

    Article  ADS  Google Scholar 

  • K. Halbach, Physical and optical properties of rare earth cobalt magnets. Nucl. Instrum. Methods 187, 109–117 (1981)

    Article  ADS  Google Scholar 

  • K. Halbach, Permanent magnet undulators. J. Phys. Colloq. 44(C1), 211–216 (1983)

    Article  Google Scholar 

  • K. Halbach, Understanding modern magnets through conformal mapping. Int. J. Mod. Phys. B 4(6), 1201–1222 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  • K. Halbach et al., A permanent magnet undulator for SPEAR. IEEE Trans. Nucl. Sci. NS-28, 3136–3138 (1981)

    Article  ADS  Google Scholar 

  • T. Hara et al., In-vacuum undulators at SPring-8. J. Synchrotron Radiat. 5, 403–405 (1998a)

    Article  Google Scholar 

  • T. Hara et al., SPring-8 twin helical undulator. J. Synchrotron Radiat. 5, 426–427 (1998b)

    Article  Google Scholar 

  • T. Hara et al., In-vacuum X-ray helical undulator for high flux beamline at SPring-8. Nucl. Instrum. Methods Phys. Res. A 467–468, 165–168 (2001)

    Article  ADS  Google Scholar 

  • T. Hara et al., Helicity switching of circularly polarized undulator radiation by local orbit bumps. Nucl. Instrum. Methods Phys. Res. A 498, 496–502 (2003)

    Article  ADS  Google Scholar 

  • T. Hara et al., Cryogenic permanent magnet undulators. Phys. Rev. ST Accel. Beams 7, 050702-1-6 (2004)

    Google Scholar 

  • T. Hara et al., Pulse-by-pulse multi-beam-line operation for x-ray free-electron lasers. Phys. Rev. ST Accel. Beams 19, 020703-1-7 (2016)

    Google Scholar 

  • S. Hashimoto, S. Sasaki, Concept of a new undulator which will suppress the rational harmonics. Nucl. Instrum. Methods Phys. Res. A 361, 611–622 (1995)

    Article  ADS  Google Scholar 

  • Y. He et al., Research on magnetic properties of Nd(Pr)FeB magnet for cryogenic permanent-magnet undulator of SSRF. IEEE Trans. Appl. Supercond. 26(4), 0604204-1-4 (2016)

    Google Scholar 

  • T. Hezel et al., Experimental results with a novel superconductive in-vacuum mini-undulator test device at the Mainz Microtron MAMI, in Proc. PAC, New York, pp. 165–167 (1999)

    Google Scholar 

  • S. Hirata, S. Sasaki, Theoretical examination of radiation spectrum from the quasi-periodic undulator, in Proc. IPAC, Kyoto, pp. 3144–3146 (2010)

    Google Scholar 

  • A. Hiraya et al., Undulators at HiSOR – a compact racetrack-type ring. J. Synchrotron Radiat. 5, 445–447 (1998)

    Article  Google Scholar 

  • C. Hirschmugl, M. Sagurton, G. Williams, Multiparticle coherence calculation for synchrotron-radiation emission. Phys. Rev. A 44(2), 1316–1320 (1991)

    Article  ADS  Google Scholar 

  • A. Ho et al., A novel wiggler design for use in a high-efficiency free-electron laser. Nucl. Instrum. Methods A296, 631–637 (1990)

    Article  ADS  Google Scholar 

  • A. Ho et al., A solenoid-derived wiggler. IEEE J. Quantum Electron. 27(12), 2650–2655 (1991)

    Article  ADS  Google Scholar 

  • A. Hofmann, The physics of synchrotron radiation, Cambridge monographs on particle physics, nuclear physics and cosmology, vol. 20 (Cambridge, 2004). ISBN 978-0-521-30826-7

    Google Scholar 

  • E. Hoyer et al., A new wiggler beamline for SSRL. Nucl. Instrum. Methods 208, 117–125 (1983)

    Article  Google Scholar 

  • J.-C. Huang et al., Challenges of in-vacuum and cryogenic permanent magnet undulator technologies. Phys. Rev. ST Accel. Beams 20, 064801-1-18 (2017)

    Google Scholar 

  • G. Ingold et al., Fabrication of a high-field short-period superconducting undulator. Nucl. Instrum. Methods Phys. Res. A 375, 451–455 (1996)

    Article  ADS  Google Scholar 

  • G. Isoyama et al., Construction of a multiundulator, revolver no. 19, at the photon factory. Rev. Sci. Instrum. 60(7), 1863–1866 (1989)

    Article  ADS  Google Scholar 

  • Y. Ivanyushenkov et al., Test results of a planar superconducting undulator for the advanced photon source. IEEE Trans. Appl. Supercond. 24(3), 4102004 (2014)

    Article  Google Scholar 

  • Y. Ivanyushenkov et al., Development and operating experience of a 1.1-m-long superconducting undulator at the advanced photon source. Phys. Rev. ST Accel. Beams 20, 100701-1-13 (2017a)

    Google Scholar 

  • Y. Ivanyushenkov et al., Conceptual design of a novel scape undulator, in Proc. IPAC, Copenhagen, pp. 1596–1598 (2017b)

    Google Scholar 

  • Y. Ivanyushenkov et al., Status of the development of superconducting undulators at the advanced light source. Synchrotron Radiat. News 31(3), 29–34 (2018)

    Article  Google Scholar 

  • D. Iwanenko, I. Pomeranchuk, On the maximal energy attainable in a betatron. Phys. Rev.; Letter to the Editor, 65(11–12), 343 (1944)

    Google Scholar 

  • M. Jaski et al., Fast-switching variably polarizing undulator, in Proc. Na-PAC, Pasadena, pp. 1061–1063 (2013a)

    Google Scholar 

  • M. Jaski et al., An electromagnetic variably polarizing quasi-periodic undulator, in Proc. NA-PAC, Pasadena, pp. 1064–1066 (2013b)

    Google Scholar 

  • E. Karantzoulis et al., Elettra status present upgrades and plans, in Proc. IPAC, Copenhagen, pp. 2657–2659 (2017)

    Google Scholar 

  • M. Kasa, DSP methods for correcting dispersion and pulse width effects during pulsed wire measurements. Nucl. Instrum. Methods in Phys. Res. A 122, 224–231 (2018)

    Google Scholar 

  • M. Katoh et al., Helical phase structure of radiation from an electron in circular motion. Sci. Rep. 7, 6130-1-8 (2017)

    Google Scholar 

  • M. Kawai et al., First observation of quasiperiodic undulator radiation, in Proc. EPAC, Sitges, pp. 2549–2551 (1996)

    Google Scholar 

  • T. Kii et al., Low-temperature operation of a bulk HTSC staggered array undulator. IEEE Trans. Appl. Supercond. 22(3), 4100904-1–4 (2012)

    Google Scholar 

  • K.-J. Kim, A synchrotron radiation source with arbitrarily adjustable elliptical polarization. Nucl. Instrum. Methods Phys. Res. 219, 425–429 (1984)

    Article  ADS  Google Scholar 

  • K.-J. Kim, Angular distribution of undulator power for an arbitrary deflection parameter K. Nucl. Instrum. Methods Phys. Res. A 246, 67–70 (1986a)

    Article  ADS  Google Scholar 

  • K.-J. Kim, Brightness, coherence and propagation characteristics of synchrotron radiation. Nucl. Instrum. Methods Phys. Res. A 246, 71–76 (1986b)

    Article  ADS  Google Scholar 

  • K.-J. Kim, Brightness and coherence of synchrotron radiation and high-gain free electron lasers. Nucl. Instrum. Methods Phys. Res. A 261, 44–53 (1987)

    Article  ADS  Google Scholar 

  • K.-J. Kim, Characteristics of synchrotron radiation, in Proceedings of US Particle Accelerator Summer School (1989)

    Google Scholar 

  • S. Kim, A scaling law for the magnetic fields of superconducting undulators. Nucl. Instrum. Methods in Phys. Res. A 546, 604–619 (2005)

    Article  ADS  Google Scholar 

  • S. Kim et al., R & D of short-period NbTi and Nb3Sn superconducting undulators for the APS, in Proc. PAC, Knoxville, pp. 2419–2421 (2005)

    Google Scholar 

  • S. Kimura et al., Performance of helical undulator of the UVSOR. J. Synchrotron Radiat. 5, 453–455 (1998)

    Article  Google Scholar 

  • B. Kincaid, A short-period helical wiggler as an improved source of synchrotron radiation. J. Appl. Phys. 48(7), 2684–2691 (1977)

    Article  ADS  Google Scholar 

  • B. Kincaid, Random errors in undulators and their effects on the radiation spectrum. J. Opt. Soc. Am. B 2, 1294–1306 (1985)

    Article  ADS  Google Scholar 

  • R. Kinjo, T. Tanaka, Phase combination for self-cancellation of magnetic forces in undulators. Phys. Rev. ST Accel. Beams 17, 122401-1-8 (2014)

    Google Scholar 

  • R. Kinjo et al., Magnetic property of a staggered-array undulator using a bulk high-temperature superconductor. Phys. Rev. ST Accel. Beams 17, 022401-1-12 (2014)

    Google Scholar 

  • R. Kinjo, T. Tanaka, Spectrum Splitting for fast polarization switching of undulators. J. Synchrotrn Radiat 23, 751–757 (2016)

    Google Scholar 

  • R. Kinjo et al., Lightweight-compact variable-gap undulator with force cancellation system based on multipole monolithic magnets. Rev. Sci. Instrum. 88, 073302-1-9 (2017)

    Google Scholar 

  • P. Kirkpatrick, A. Baez, Formation of optical images by X-rays. J. Opt. Soc. Am. 38(9), 766–774 (1948)

    Article  ADS  Google Scholar 

  • H. Kitamura, Polarization of undulator radiation. Jpn. J. Appl. Phys. 19(4), L185–L188 (1980)

    Article  ADS  Google Scholar 

  • H. Kitamura et al., Recent developments of insertion devices at SPring-8. Nucl. Instrum. Methods Phys. Res. A 467–468, 110–113 (2001)

    Article  ADS  Google Scholar 

  • C. Kitegi, O. Chubar, C. Eng, Magnet system optimization for segmented adaptive-gap in-vacuum undulator. in AIP Conf. Proc. vol. 1741, pp. 02018-1-4 (2016)

    Google Scholar 

  • R. Klein et al., The PTB electromagnetic undulator for BESSY II. J. Synchrotron Radiat. 5, 451–452 (1998)

    Article  Google Scholar 

  • I.S. Ko et al., Construction and commissioning of PAL-XFEL facility. Appl. Sci. 7(479), 7050479-1-11 (2017)

    Google Scholar 

  • G. Kornyukhin et al., The magnetic system of an optical klystron using SmCo permanent magnets. Nucl. Instrum. Methods 208, 189–191 (1983)

    Article  Google Scholar 

  • C.-Y. Kuo et al., Design of a short-period helical permanent magnet undulator. IEEE Trans. Appl. Supercond. 28(3), 4100805-1-5 (2018)

    Google Scholar 

  • G. Le Bec, J. Chavanne, Permanent magnet steeres for canted undulators at the ESRF. Nucl. Instrum. Methods Phys. Res. A 664, 214–222 (2012)

    Article  ADS  Google Scholar 

  • Y. Li, B. Faatz, J. Pflueger, Polarization properties of a crossed planar undulator. Nucl. Instrum. Methods Phys. Res. A 613, 163–168 (2010)

    Article  ADS  Google Scholar 

  • Y. Li, B. Ketenogly, J. Pflueger, Girder deformation related phase errors on the undulators for the European X-ray free electron laser. Phys. Rev. ST Accel. Beams 18, 060704-1-9 (2015)

    Google Scholar 

  • L. Liu, H. Westfahl Jr., Towards diffraction limited storage ring based light sources, in Proc. IPAC, Copenhagen, pp. 1203–1208 (2017)

    Google Scholar 

  • E. Longhi et al., A new cooling system for cryocooled permanent magnet undulators at DIAMOND light source, in Proc. IPAC, Dresden, pp. 2047–2049 (2014)

    Google Scholar 

  • A. Loulergue et al., Towards a free electron laser using laser plasma acceleration, in Proc. IPAC 2018, Vancouver, pp. 4723–4725 (2018)

    Google Scholar 

  • A. Maier et al., Demonstration scheme for a laser-plasma-driven free-electron laser. Phys. Rev. X 2, 031019-1-7 (2012)

    Google Scholar 

  • A.R. Maier, M. Kirchen, F. Grüner, Brilliant light sources driven by laser-plasma accelerators, in Synchrotron Light Sources and Free-Electron Lasers (Springer Cham, 2016), pp. 225–249

    Google Scholar 

  • J. Mallinson, One-sided fluxes – a magnetic curiosity? IEEE Trans. Magn. MAG-9(4), 678–682 (1973)

    Article  ADS  Google Scholar 

  • O. Marcouille et al., Design, construction and magnetic measurements of the HU640 (OPHELIE2) undulator dedicated to the DESIRS VUV beamline at SOLEIL, in AIP Conf. Proc., SRI 2006, Daegu, vol. 879, pp. 311–314 (2007)

    Google Scholar 

  • O. Marcouille et al., In vacuum permanent magnet wiggler optimized for the production of hard x rays. Phys. Rev. ST Accel. Beams 16, 050702-1–11 (2013)

    Google Scholar 

  • O. Marcouille et al., Production of high energy photons with in-vacuum wigglers: from SOLEIL wiggler to MAX IV wiggler, AIP Conference Proceedings 2054, 030027 (2019)

    Google Scholar 

  • X.-M. Marechal et al., Development of an elliptical multipole wiggler at SPRING-8. J. Synchrotron Radiat. 5, 431–433 (1998)

    Article  Google Scholar 

  • F. Marteau et al., The 65mm period electromagnetic/permanent magnets helical undulator at SOLEIL, in Proc. IPAC, San Sebastian, pp. 3239–3241 (2011)

    Google Scholar 

  • I. Martin et al., Electron beam commissioning of the DDBA modification to the diamond storage ring, in Proc. IPAC, Copenhagen, pp. 2800–2803 (2017)

    Google Scholar 

  • N. Mezentsev, Superconducting multipole wiggles for generation of synchrotron radiation, in Proc. RuPAC, Obninsk, pp. 296–300 (2014)

    Google Scholar 

  • C. Milne et al., SwissFEL: the Swiss X-ray free electron laser. Appl. Sci. 7(7), 720-1-53 (2017)

    Google Scholar 

  • M. Moiseev, M. Nikitin, N. Fedosov, Change in the kind of polarization of undulator radiation. Sov. Phys. J. 21, 332–335 (1978)

    Article  Google Scholar 

  • H. Motz, Applications of the radiation from fast electron beams. J. Appl. Phys. 22(5), 527–535 (1951)

    Article  ADS  MATH  Google Scholar 

  • H. Motz, W. Thon, R.N. Whitehurst, Experiments on radiation by fast electron beam. J. Appl. Phys. 24(7), 826–833 (1953)

    Article  ADS  Google Scholar 

  • J. Mun et al., Variable-period permanent-magnet helical undulator. Phys. Rev. ST Accel. Beams 17, 080701-1-6 (2014)

    Google Scholar 

  • A. Murokh et al., Textured dysprosium and gadolinium poles for high-field, short-period hybrid undulators. Nucl. Instrum. Methods Phys. Res. A 735, 521–527 (2014)

    Article  ADS  Google Scholar 

  • L. Nahon, C. Alcaraz, SU5: a calibrated variable-polarization synchrotron radiation beam line in the vacuum-ultraviolet range. Appl. Opt. 43(5), 1024–1037 (2004)

    Article  ADS  Google Scholar 

  • L. Nahon et al., A versatile electromagnetic planar/helical crossed undulator optimized for the SU5 low energy/high resolution beamline at Super-ACO. Nucl. Instrum. Methods Phys. Res. A 396, 237–250 (1997)

    Article  ADS  Google Scholar 

  • L. Nahon et al., Commissioning of OPHELIE in the DC mode: an electromagnetic planar/helical crossed VUV undulator at Super-ACO. Nucl. Instrum. Methods Phys. Res. A 447, 569–586 (2000)

    Article  ADS  Google Scholar 

  • J. Nodvick, D. Saxon, Suppression of coherent radiation by electrons in a synchrotron. Phys. Rev. 96(1), 180–184 (1954)

    Article  ADS  Google Scholar 

  • H.-D. Nuhn et al., Undulator radiation damage experience at LCLS, in Proc. FEL, Basel, pp. 127–130 (2014)

    Google Scholar 

  • H.-D. Nuhn et al., Commissioning of the delta polarizing undulator at LCLS, in Proc. FEL 2016, Daejeon, pp. 757–763 (2016)

    Google Scholar 

  • F. O’Shea et al., Short period, high field cryogenic undulator for extreme performance x-ray free electron lasers. Phys. Rev. ST Accel. Beams 13, 070702-1-12 (2010)

    Google Scholar 

  • H. Onuki, Elliptically polarized synchrotron radiation source with crossed and retarded magnetic fields. Nucl. Instrum. Methods Phys. Res. A 246, 94–98 (1986)

    Article  ADS  Google Scholar 

  • H. Onuki, P. Elleaume, Undulators, Wigglers and Their Applications (Taylor and Francis, London/New York, 2003). ISBN-0-415-28040-0

    Google Scholar 

  • H. Onuki et al., Polarizing undulator with crossed and retarded magnetic fields. Rev. Sci. Instrum. 60(7), 1838–1841 (1989)

    Article  ADS  Google Scholar 

  • J. Ortega et al., Realization of the permanent magnet undulator NOEL. Nucl. Instrum. Methods 206, 281–288 (1983)

    Article  Google Scholar 

  • J. Pflüger, Insertion devices for DORIS III. Rev. Sci. Instrum. 63, 295–300 (1992)

    Article  ADS  Google Scholar 

  • J. Pflüger, G. Heintze, The asymmetric wiggler at HASYLAB. Nucl. Instrum. Methods Phys. Res. A 289, 300–306 (1990)

    Article  ADS  Google Scholar 

  • J. Pflüger, H. Lu, T. Teichmann, Field fine tuning by pole height adjustment for the undulator of the TTF-FEL. Nucl. Instrum. Methods Phys. Res. A 429, 386–391 (1999)

    Article  ADS  Google Scholar 

  • I. Pomeranchuk, J. Phys. USSR. 2, 65 (1940)

    Google Scholar 

  • S. Prestemon et al., Superconducting undulators with variable polarization and enhanced spectral range. IEEE Trans. Appl. Supercond. 16(2), 1873–1876 (2006)

    Article  ADS  Google Scholar 

  • S. Qiao et al., Knot undulator to generate linearly polarized photons with low on-axis power density. Rev. Sci. Instrum. 80, 085108-1-4 (2009)

    Google Scholar 

  • Z. Qiaogen, Novel undulators developed at SINAP. Synchrotron Radiat. News 31(3), 18–23 (2018)

    Article  Google Scholar 

  • D. Quimby, A. Pindroh, K. Robinson, The wedged pole concept for improving the performance of permanent magnet hybrid undulators. Nucl. Instrum. Methods Phys. Res. A 259, 304–311 (1987)

    Article  ADS  Google Scholar 

  • D. Quimby et al., Development of a 10-meter wedged-pole undulator. Nucl. Instrum. Methods Phys. Res. A 285, 281–289 (1989)

    Article  ADS  Google Scholar 

  • P. Raimondi, Hybrid multi bend achromat: from SuperB to EBS, in Proc. IPAC 2017, Copenhagen, pp. 3670–3675 (2017)

    Google Scholar 

  • G. Rakowski et al., High-performance pure permanent-magnet undulators. Nucl. Instrum. Methods Phys. Res. A 296, 597–602 (1990)

    Article  ADS  Google Scholar 

  • E. Rochepault et al., Error analysis and field correction methods in superconducting undulators. IEEE Trans. Appl. Supercond. 24(3), 4101005-1-5 (2014)

    Google Scholar 

  • A. Rodrigues et al., Sirius light source status report, in Proc. IPAC 2018, Vancouver, pp. 2886–2889 (2018)

    Google Scholar 

  • A. Rogalev et al., Hybrid electromagnet/permanent magnet helical undulator: first results, in SPIE Conf. Proc., Denver, vol. 3773, pp. 275–283 (1999)

    Google Scholar 

  • S. Sasaki, Analysis for a planar variably-polarizing undulator. Nucl. Instrum. Methods Phys. Res. A 347, 83–86 (1994)

    Article  ADS  Google Scholar 

  • S. Sasaki, Conceptual design of new type quasi-periodic undulator, Sincrotrone Trieste, Report ST/M-TN-98/24 (1998)

    Google Scholar 

  • S. Sasaki, The possibility for a short-period hybrid staggered undulator, in Proc. PAC 2005, Knoxville, pp. 982–984 (2005)

    Google Scholar 

  • S. Sasaki, New scheme of quasi-periodic undulators, in Proc. IPAC, Kyoto, pp. 3141–3143 (2010)

    Google Scholar 

  • S. Sasaki, I. McNulty, Proposal for generating brilliant X-ray beams carrying orbital angular momentum. Phys. Rev. Lett. 100, 124801-1-4 (2008)

    Google Scholar 

  • S. Sasaki, R. Schlueter, Crossed elliptical polarization undulator, in Proc. PAC, Vancouver, pp. 802–804 (1997)

    Google Scholar 

  • S. Sasaki, K. Miyata, T. Takada, A new undulator for generating variably polarized radiation. Jpn. J. Appl. Phys. 31, L1794–796 (1992)

    Google Scholar 

  • S. Sasaki et al., Design of a new type of planar undulator for generating variably polarized radiation. Nucl. Instrum. Methods Phys. Res. A 331, 763–767 (1993)

    Article  ADS  Google Scholar 

  • S. Sasaki, B. Diviacco, R. Walker, Brainstorming on new permanent magnet undulator designs, in Proc. EPAC, Stockholm, pp. 2237–2239 (1998)

    Google Scholar 

  • S. Sasaki et al., Radiation damage to advanced photon source undulators, in Proc. PAC, Knoxville, pp. 4126–4128 (2005)

    Google Scholar 

  • S. Sasaki, I. McNulty, R. Dejus, Undulator radiation carrying spin and orbital angular momentum. Nucl. Instrum. Methods Phys. Res. A 582(1), 43–46 (2007)

    Article  ADS  Google Scholar 

  • S. Sasaki, A. Miyamoto, S. Qiao, Design study of knot-APPLE undulator for PES-beamline at SSRF, in Proc. NA-PAC, Pasadena, pp. 1043–1045 (2013)

    Google Scholar 

  • F. Schäfers et al., Soft-x-ray polarimeter with multilayer optics: complete analysis of the polarization state of light. Appl. Opt. 38(19), 4074–4088 (1999)

    Article  ADS  Google Scholar 

  • M. Scheer, WAVE – a computer code for the tracking of electrons through magnetic fields and the calculation of spontaneous synchrotron radiation, in Proc. ICAP, Rostock-Warnemünde, pp. 86–88 (2012)

    Google Scholar 

  • M. Scheer, UNDUMAG – a new computer code to calculate the magnetic properties of undulators, in Proc. IPAC 2017, Copenhagen, pp. 3071–3073 (2017)

    Google Scholar 

  • M. Scheer, G. Wüstefeld, Influence of a wavelength shifter on the performance of the synchrotron light source BESSY II, in Proc. EPAC, Berlin, pp. 676–678 (1992)

    Google Scholar 

  • T. Schietinger, Towards full performance operation of SwissFEL, in Proc. IPAC 2018, Vancouver, pp. 24–28 (2018)

    Google Scholar 

  • D. Schirmer et al., First experience with the superconducting asymmetric wiggler at the DELTA facility, in Proc. EPAC, Vienna, pp. 2337–2339 (2000)

    Google Scholar 

  • T. Schmidt, M. Calvi, APPLE X undulator for the SwissFEL soft X-ray beamline Athos. Synchrotron Radiat. News 31(3), 35–40 (2018)

    Article  Google Scholar 

  • T. Schmidt et al., Insertion devices at the Swiss light source (phase I). Nucl. Instrum. Methods Phys. Res. A 467–468, 126–129 (2001)

    Article  ADS  Google Scholar 

  • T. Schmidt et al., First results of the UE212 quasiperiodic elliptical electromagnetic undulators at SLS, in Proc. EPAC, Paris, pp. 2631–2633 (2002)

    Google Scholar 

  • T. Schmidt et al., A fixed gap APPLE II undulator for SLS, in AIP Conf. Proc., SRI 2006, vol. 879, pp. 400–403 (2007)

    Google Scholar 

  • T. Schmidt et al., Operation experience of the UE44 fixed gap APPLE II at SLS. J. Phys, Conf. Ser. 425, 032020-1-4 (2013)

    Google Scholar 

  • M. Scholz, FEL performance achieved at European XFEL, in Proc. IPAC 2018, Vancouver, pp. 29–33 (2018)

    Google Scholar 

  • J. Schwinger, On the classical radiation of accelerated electrons. Phys. Rev. 75(12), 1912–1925 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • D. Shechtman et al., Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53(20), 1951–1954 (1984)

    Article  ADS  Google Scholar 

  • G. Shenoy et al., Variable-period undulators as synchrotron radiation light sources. J. Synchrotron Radiat. 10, 205–213 (2003)

    Article  Google Scholar 

  • X. Shi et al., A hybrid method for X-ray optics simulation: combining geometric ray-tracing and wavefront propagation. J. Synchrotron Radiat. 21, 669–678 (2014)

    Article  Google Scholar 

  • K. Shirasawa et al., Optimization of asymmetric figure-8 undulator as circularly polarized light source. Phys. Rev. ST Accel. Beams 7, 020702-1-5 (2004a)

    Google Scholar 

  • K. Shirasawa et al., Development of multi-polarization-mode undulator, in AIP Conf. Proc., SRI 2003, vol. 705, pp. 203–206 (2004b)

    Google Scholar 

  • K. Shirasawa et al., Fast helicity switching of circularly polarized light using twin helical undulators, in AIP Conf. Proc., SRI 2003, vol. 705, pp. 191–194 (2004c)

    Google Scholar 

  • J. Shouten, E. Rial, Electron beam heating and operation of the cryogenic undulator and superconducting wigglers at diamond, in Proc. IPAC, San Sebastian, pp. 3323–3325 (2011)

    Google Scholar 

  • O. Singh et al., Orbit compensation for the time varying elliptically polarized wiggler. Rev. Sci. Instrum. 67(9), 3346-1-6 (1996)

    Google Scholar 

  • B. Singh et al., Implementation of double mini-beta optics at the DIAMOND light source, in Proc. IPAC, San Sebastian, pp. 2103–2105 (2011)

    Google Scholar 

  • P. Stefan et al., NSLS prototype small-gap undulator (PSGU), in Proc. PAC 1991, San Francisco, pp. 1096–1098 (1991)

    Google Scholar 

  • R. Stoner et al., A planar electromagnet microwiggler for free electron lasers. IEEE Trans. Plasma Sci. 18(3), 387–391 (1990)

    Article  ADS  Google Scholar 

  • N. Strelnikov et al., Vertically polarizing undulator with dynamic compensation of magnetic forces. Phys. Rev. ST Accel. Beams 20, 010701-1-14 (2017)

    Google Scholar 

  • V. Suller et al., SRS behaviour with a superconducting 5-Tesla wiggler insertion. IEEE Trans. Nucl. Sci. NS-30(4), 3127–3129 (1983)

    Article  ADS  Google Scholar 

  • W. Swift, M. Mathur, Cryogenic magnetic properties of secondary recrystallized thin sheet dysprosium. IEEE Trans. Magn. 10(2), 308–313 (1974)

    Article  ADS  Google Scholar 

  • M. Takao, S. Sasaki, S. Hashimoto, Spectrum formula of the synchrotron radiation from a quasiperiodic undulator. Phys. Rev. E 52(5), 5454–5459 (1995)

    Article  ADS  Google Scholar 

  • T. Tanabe et al., The latest status of NSLS-II insertion devices. J. Phys. Conf. Ser. 493, pp. 012031-1-4 (2014)

    Google Scholar 

  • T.K.H. Tanaka, Simple scheme of harmonic suppression by undulator segmentation. J. Synchrotron Radiat. 9, 266–269 (2002)

    Article  Google Scholar 

  • T. Tanaka, Numerical methods for characterization of synchrotron radiation based on the Wigner function method. Phys. Rev. ST Accel. Beams 17, 060702-1-14 (2014)

    Google Scholar 

  • T. Tanaka, H. Kitamura, Figure-8 undulator as an insertion device with linear polarization and low on-axis power density. Nucl. Instrum. Methods Phys. Res. A 364, 368–373 (1995)

    Article  ADS  Google Scholar 

  • T. Tanaka, H. Kitamura, Analysis of Figure-8-undulator radiation. J. Synchrotron Radiat. 3, 47–52 (1996)

    Article  Google Scholar 

  • T. Tanaka, H. Kitamura, A novel insertion device for circularly polarized radiation. J. Synchrotron Radiat. 4, 193–198 (1997)

    Article  ADS  Google Scholar 

  • T. Tanaka, H. Kitamura, Asymmetric figure-8 undulator as multipolarization light source. Nucl. Instrum. Methods Phys. Res. A 449, 629–637 (2000a)

    Article  ADS  Google Scholar 

  • T. Tanaka, H. Kitamura, Effective initial sorting of undulator magnets. Rev. Sci. Instrum. 71(8), 3010–3015 (2000b)

    Article  ADS  Google Scholar 

  • T. Tanaka, H. Kitamura, SPECTRA: a synchrotron radiation calculation code. J. Synchrotron Radiat. 8, 1221–1228 (2001a)

    Article  Google Scholar 

  • T. Tanaka, H. Kitamura, Parabolic undulator and its application to fast switching of helicity. Nucl. Instrum. Methods Phys. Res. A 467–468, 153–156 (2001b)

    Article  ADS  Google Scholar 

  • T. Tanaka, H. Kitamura, Production of linear polarization by segmentation of helical undulator. Nucl. Instrum. Methods Phys. Res. A 490, 583–591 (2002)

    Article  ADS  Google Scholar 

  • T. Tanaka, H. Kitamura, Improvement of crossed undulator for higher degree of polarization, in AIP Conf. Proc., SRI2003, vol. 705, pp. 231–234 (2004)

    Google Scholar 

  • T. Tanaka, H. Kitamura, Composite period undulator to improve the wavelength tunability of free electron lasers. Phys. Rev. ST Accel. Beams 14, 050701-1-6 (2011)

    Google Scholar 

  • T. Tanaka et al., Construction and performance of a figure-8 undulator. Rev. Sci. Instrum. 70(11), 4153–4160 (1999)

    Article  ADS  Google Scholar 

  • T. Tanaka, T. Seike, H. Kitamura, Undulator field correction by in-situ sorting. Nucl. Instrum. Methods Phys. Res. A 465, 600–605 (2001)

    Article  ADS  Google Scholar 

  • T. Tanaka, K. Shirasawa, K. Kitamura, Consideration on an undulator magnetic structure for polarization control. Rev. Sci. Instrum. 73(4), 1724–1727 (2002)

    Article  ADS  Google Scholar 

  • T. Tanaka et al., Development of the short-period undulator for the X-ray FEL project at SPring-8, in AIP Conf. Proc., Synch. Rad. Instrum., San Francisco, vol. 705, pp. 227–230 (2003)

    Google Scholar 

  • T. Tanaka, T. Hara, H. Kitamura, Application of high-temperature superconducting permanent magnets to synchrotron radiation sources. Phys. Rev. ST Accel. Beams 7, 090704-1-5 (2004)

    Google Scholar 

  • T. Tanaka et al., In-vacuum undulators, in Proc. FEL Conf., Stanford, pp. 370–377 (2005)

    Google Scholar 

  • T. Tanaka et al., Development of cryogenic permanent magnet undulators operating around liquid nitrogen temperature. New J. Phys. 8, 287–302 (2006)

    Article  ADS  Google Scholar 

  • T. Tanaka et al., Magnetic characterization of cryogenic permanent-magnet undulators: fist results. J. Synchrotron Radiat. 14, 416–420 (2007)

    Article  Google Scholar 

  • T. Tanaka et al., In situ correction of field errors induced by temperature gradient in cryogenic undulators. Phys. Rev. ST Accel. Beams 12, 120702-1-5 (2009)

    Google Scholar 

  • H. Tanaka, M. Yabashi, et al., A compact X-ray free-electron laser emitting in the sub-ångström-region. Nat. Photonics 6, 540–544 (2012a)

    Article  ADS  Google Scholar 

  • T. Tanaka et al., Undulator commissioning by characterization of radiation in x-ray free electron lasers. Phys. Rev. ST Accel. Beams 15, 110701-1-10 (2012b)

    Google Scholar 

  • R. Tatchyn, A universal classification of optimal undulator types and parameters for arbitrary storage ring environments. Nucl. Instrum. Methods Phys. Res. A 275, 430–434 (1989)

    Article  ADS  Google Scholar 

  • P. Tavares et al., The MAX IV storage ring project. J. Synchrotron Radiat. 21, 862–877 (2014)

    Article  Google Scholar 

  • A. Temnykh, Vibrating wire and flipping coil magnetic measurement of a CESR-C 7-pole wiggler magnet, in Proc. PAC, Portland, pp. 1026–1028 (2003)

    Google Scholar 

  • A. Temnykh, Delta undulator for Cornell energy recovery linac. Phys. Rev. ST Accel. Beams 11, 120702-1-10 (2008)

    Google Scholar 

  • A. Temnykh et al., Compact undulator for the Cornell high energy synchrotron source: design and beam test results. J. Phys. Conf. Ser. 425, 032004-1-5 (2013)

    Google Scholar 

  • M. Tischer et al., Damping wigglers at the PETRA III light source, in Proc. EPAC, Genoa, pp. 2317–2319 (2008)

    Google Scholar 

  • M. Tischer et al., Refurbishment of radiation-damaged undulators, in AIP Conf. Proc., vol. 1741, pp. 020022-1-4 (2016)

    Google Scholar 

  • R. Tsuru et al., Evaluation of fatigue properties of bulk ring superconductors for synchrotron radiation sources. J. Phys. C 463–465, 1333–1337 (2007)

    Article  Google Scholar 

  • K. Uestuener et al., Sintered (Pr,Nd)-Fe-B permanent magnets with (BH)max of 520 kJ/m3 at 85K for cryogenic applications, in Proc. 20th REPM Conf., Crete, p. 397 (2008)

    Google Scholar 

  • P. Vagin, A. Schöps, M. Tischer, Variable period undulator with tunable polarization. Synchrotron Radiat. News 31(3), 48–52 (2018)

    Article  Google Scholar 

  • M. Veenendaal, I. McNulty, Prediction of strong dichroism induced by X rays carrying orbital momentum. Phys. Rev. Lett. 98, 157401-1-4 (2007)

    Google Scholar 

  • N. Vinokurov, O. Shevchenko, V. Tcheskidov, Variable-period permanent magnet undulators. Phys. Rev. ST Accel. Beams 14, 040701-1-7 (2011)

    Google Scholar 

  • R. Walker, Near field effects in off-axis undulator radiation. Nucl. Instrum. Methods Phys. Res. A 267, 537–546 (1988)

    Article  ADS  Google Scholar 

  • R. Walker, Interference effects in undulator and wiggler radiation sources. Nucl. Instrum. Methods Phys. Res. A 335, 328–337 (1993)

    Article  ADS  Google Scholar 

  • R. Walker, Insertion devices: undulators and wigglers, in CERN Accelerator School, Grenoble, 1996, Vols. ELETTRA Internal Report ST/M-97/2 (1997)

    Google Scholar 

  • R. Walker, Phase errors and their effect on undulator radiation properties. Phys. Rev. ST Accel. Beams 16, 010704-1-16 (2013)

    Google Scholar 

  • R. Walker, B. Diviacco, Studies of insertion devices for producing circularly polarized radiation with variable helicity in ELETTRA. Rev. Sci. Instrum. 63(1), 332–335 (1992)

    Article  ADS  Google Scholar 

  • R. Walker et al., Construction and testing of an electromagnetic elliptical wiggler for ELETTRA, in Proceedings EPAC, Stockholm, pp. 2255–2257 (1998)

    Google Scholar 

  • H. Weijers et al., A short-period high-field Nb3Sn undulator study. IEEE Trans. Appl. Supercond. 16(2), 311–314 (2006)

    Article  ADS  Google Scholar 

  • H. Weise, W. Decking, Commissioning and first lasing of the European XFEL, in Proc. FEL 2017, Santa Fe, pp. 9–13 (2017)

    Google Scholar 

  • H. Wiedemann, Particle Accelerator Physics, 3rd edn. (Springer, Berlin/Heidelberg/New York, 2007)

    Google Scholar 

  • E. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    Article  ADS  MATH  Google Scholar 

  • H. Winick, J. Spencer, Wiggler magnets at SSRL – present experience and future plans. Nucl. Instrum. Methods 172, 45–53 (1980)

    Article  ADS  Google Scholar 

  • F. Wolff-Fabris et al., Status of the radiation damage on the European XFEL undulator systems, in Proc. IPAC, Vancouver, pp. 1776–1779 (2018)

    Google Scholar 

  • D. Wollmann et al., Induction shimming: a new shimming concept for superconductive undulators. Phys. Rev. ST Accel. Beams 11, 100702-1-7 (2008)

    Google Scholar 

  • D. Wollmann et al., Experimental demonstration of the induction-shimming concept in superconducting undulators. Phys. Rev. ST Accel. Beams 12, 040702-1-6 (2009)

    Google Scholar 

  • S. Yamamoto, Development of very short period undulators, in Proc. IPAC 2018, Vancouver, pp. 1735–1739 (2018)

    Google Scholar 

  • S. Yamamoto, H. Kitamura, Generation of quasi-circularly polarized undulator radiation with higher harmonics. Jpn. J. Appl. Phys. 26(10), L1613–L1615 (1987)

    Article  ADS  Google Scholar 

  • S. Yamamoto et al., Construction of insertion devices for elliptically polarized synchrotron radiation. Rev. Sci. Instrum. 60(7), 1834–1837 (1989a)

    Article  ADS  Google Scholar 

  • S. Yamamoto et al., First production of intense circularly polarized hard X rays from a novel multipole wiggler in an accumulation ring. Phys. Rev. Lett. 62(23), 2672–2676 (1989b)

    Article  ADS  Google Scholar 

  • S. Yamamoto et al., Construction of an in-vacuum type undulator for the production of undulator x rays in the 5–25 keV region. Rev. Sci. Instrum. 63(1), 400–403 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  • S. Yamamoto et al., New soft X-ray beamline BL07LSU at SPring-8. J. Synchrotron Radiat. 21, 352–365 (2014)

    Article  Google Scholar 

  • S. Yamamoto et al., Undulator development towards very short period lengths. Synchrotron Radiat. News 28(3), 19–22 (2015)

    Article  Google Scholar 

  • T. Yamamoto et al., Conceptual designs for variably polarizing leaf undulator, AIP Conference Proceedings 2054, 030024 (2019)

    Google Scholar 

  • J. Yan, S. Qiao, Note: leaf undulator to realize polarization control with low on-axis heat load. Rev. Sci. Instrum. 81, 056101-1-3 (2010)

    Google Scholar 

  • D. Zangrando et al., Commissioning of two new insertion devices at ELETTRA, in Proc. PAC, Portland, pp. 1050–1052 (2003)

    Google Scholar 

  • Q. Zhou et al., The magnetic performance of an exotic APPLE-knot undulator developed at SSRF. IEEE Trans. Appl. Supercond.26(4), 4101704-1-4 (2016)

    Google Scholar 

Download references

Acknowledgments

The author thanks A. Gaupp and M. Scheer for many fruitful discussions in the fields of undulator simulation and technology. The author appreciates the help of M. Scheer in evaluating several undulator spectra with the code WAVE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Bahrdt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bahrdt, J. (2020). Shaping Photon Beams with Undulators and Wigglers. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-030-23201-6_16

Download citation

Publish with us

Policies and ethics