Skip to main content
Log in

Nanoisland Shape Variation during Selective Epitaxy

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

A model is proposed that describes variation of the shape of nanoislands grown by method of selective epitaxy. The model is based on minimization of the system surface energy at a given volume. In terms of the adopted morphology, the island is bounded by (101) and (112) side facets and a (001) top facet with varying dimensions dependent on the volume. Areas, lengths, and aspect ratios of competing facets are calculated as functions of the island volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. Noborisaka, J. Motohisa, and T. Fukui, Appl. Phys. Lett. 86, 213102 (2005). https://doi.org/10.1063/1.1935038

    Article  ADS  Google Scholar 

  2. H. Sekiguchi, K. Kishino, and A. Kikuchi, Appl. Phys. Lett. 96, 231104 (2010). https://doi.org/10.1063/1.3443734

    Article  ADS  Google Scholar 

  3. Q. Gao, V. G. Dubrovskii, P. Caroff, J. Wong-Leung, L. Li, Y. Guo, L. Fu, H. H. Tan, and C. Jagadish, Nano Lett. 16, 4361 (2016). https://doi.org/10.1021/acs.nanolett.6b01461

    Article  ADS  Google Scholar 

  4. J. Vukajlovic-Plestina, W. Kim, L. Ghisalberti, G. Varnavides, G. Tütüncuoglu, H. Potts, M. Friedl, L. Güniat, W. C. Carter, V. G. Dubrovskii, and A. Fontcuberta i Morral, Nat. Commun. 10, 869 (2019). https://doi.org/10.1038/s41467-019-08807-9

    Article  ADS  Google Scholar 

  5. W. Kim, V. G. Dubrovskii, J. Vukajlovic-Plestina, G. Tütncüoglu, L. Francaviglia, L. Güniat, H. Potts, M. Friedl, J. P. Leran, and A. Fontcuberta i Morral, Nano Lett. 18, 49 (2018). https://doi.org/10.1021/acs.nanolett.7b03126

    Article  ADS  Google Scholar 

  6. C.-Y. Chi, C.-C. Chang, S. Hu, T.-W. Yeh, S. B. Cronin, and P. D. Dapkus, Nano Lett. 13, 2506 (2013). https://doi.org/10.1021/nl400561j

    Article  ADS  Google Scholar 

  7. M. Bollani, A. Fedorov, M. Albani, S. Bietti, R. Bergamaschini, F. Montalenti, A. Ballabio, L. Miglio, and S. Sanguinetti, Crystals 10, 57 (2020). https://doi.org/10.3390/cryst10020057

    Article  Google Scholar 

  8. P. Aseev, A. Fursina, F. Boekhout, F. Krizek, J. E. Sestoft, F. Borsoi, S. Heedt, G. Wang, L. Binci, S. Martí-Sánchez, T. Swoboda, R. Koops, E. Uccelli, J. Arbiol, P. Krogstrup, L. P. Kouwenhoven, and P. Caroff, Nano Lett. 19, 218 (2019). https://doi.org/10.1021/acs.nanolett.8b03733

    Article  ADS  Google Scholar 

  9. S. Mokkapati, P. Lever, H. H. Tan, C. Jagadish, K. E. McBean, and M. R. Phillips, Appl. Phys. Lett. 86, 113102 (2005). https://doi.org/10.1063/1.1875745

    Article  ADS  Google Scholar 

  10. S. Escobar Steinvall, E. Z. Stutz, R. Paul, M. Zamani, N. Y. Dzade, V. Piazza, M. Friedl, V. de Mestral, J.-P. Leran, R. R. Zamani, and A. Fontcuberta i Morral, Nanoscale Adv. 3, 326 (2021). https://doi.org/10.1039/D0NA00841A

    Article  ADS  Google Scholar 

  11. G. M. Kimball, A. M. Mueller, N. S. Lewis, and H. A. Atwater, Appl. Phys. Lett. 95, 112103 (2009). https://doi.org/10.1063/1.3225151

    Article  ADS  Google Scholar 

  12. M. Bhushan and A. Catalano, Appl. Phys. Lett. 38, 39 (1981). https://doi.org/10.1063/1.92124

    Article  ADS  Google Scholar 

  13. T. Suda and K. Kakishita, J. Appl. Phys. 71, 3039 (1992). https://doi.org/10.1063/1.350989

    Article  ADS  Google Scholar 

  14. J. P. Bosco, G. M. Kimball, N. S. Lewis, and H. A. Atwater, J. Cryst. Growth 363, 205 (2013). https://doi.org/10.1016/j.jcrysgro.2012.10.054

    Article  ADS  Google Scholar 

  15. R. Paul, N. Humblot, S. Escobar Steinvall, E. Z. Stutz, S. S. Joglekar, J.-B. Leran, M. Zamani, C. Cayron, R. Logé, A. G. del Aguila, Q. Xiong, and A. Fontcuberta i Morral, Cryst. Growth Des. 20, 3816 (2020). https://doi.org/10.1021/acs.cgd.0c00125

    Article  Google Scholar 

  16. M. Zeghouane, Y. André, G. Avit, J. Jridi, C. Bougerol, P.-M. Coulon, P. Ferret, D. Castelluci, E. Gil, P. Shields, V. G. Dubrovskii, and A. Trassoudaine, Nano Futures 4, 025002 (2020). https://doi.org/10.1088/2399-1984/ab8450

    Article  ADS  Google Scholar 

  17. V. G. Dubrovskii, Phys. Status Solidi B 171, 345 (1992). https://doi.org/10.1002/pssb.2221710206

    Article  ADS  Google Scholar 

  18. M. Albani, R. Bergamaschini, M. Salvalaglio, A. Voigt, L. Miglio, and F. Montalenti, Phys. Status Solidi B 256, 1800518 (2019). https://doi.org/10.1002/pssb.201800518

    Article  ADS  Google Scholar 

  19. F. Glas, Phys. Rev. B 74, 121302(R) (2006). https://doi.org/10.1103/PhysRevB.74.121302

  20. V. G. Dubrovskii, N. V. Sibirev, X. Zhang, and R. A. Suris, Cryst. Growth Des. 10, 3949 (2010). https://doi.org/10.1021/cg100495b

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the Russian Science Foundation, project no. 19-72-30004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Dubrovskii.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovskii, V.G. Nanoisland Shape Variation during Selective Epitaxy. Tech. Phys. Lett. 47, 701–704 (2021). https://doi.org/10.1134/S1063785021070191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785021070191

Keywords:

Navigation