Skip to main content
Log in

Magnetic Anisotropy of Needlelike Single-Crystal MnSb Inclusions in an InSb Matrix

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Magnetic anisotropy of needlelike single-crystal MnSb inclusions in an InSb matrix has been identified and investigated in the temperature range of 5–350 K. A power-law dependence of anisotropy constant K(T) on saturation magnetization MS(T) is observed in granular InSb–MnSb samples in the temperature range of 5–350 K with exponent n = 3.2 ± 0.4 in correspondence with the theories developed by Akulov, Zener, and the Callens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. T. Okita and Y. Makino, J. Phys. Soc. Jpn. 25, 120 (1968). https://doi.org/10.1143/JPSJ.25.120

    Article  ADS  Google Scholar 

  2. S. F. Marenkin, A. V. Kochura, A. D. Izotov, and M. G. Vasil’ev, Russ. J. Inorg. Chem. 63, 1753 (2018). https://doi.org/10.1134/S0036023618140036

    Article  Google Scholar 

  3. J. A. Cooley, M. K. Horton, E. E. Levin, S. H. Lapidus, K. A. Persson, and R. Seshadri, Chem. Mater. 32, 1243 (2020). https://doi.org/10.1021/acs.chemmater.9b04643

    Article  Google Scholar 

  4. Y. Ashizawa, S. Saito, and M. Takahashi, J. Appl. Phys. 91, 8240 (2002). https://doi.org/10.1063/1.1452223

    Article  ADS  Google Scholar 

  5. N. Nishizawa and H. Munekata, J. Cryst. Growth 378, 418 (2013). https://doi.org/10.1016/j.jcrysgro.2012.11.040

    Article  ADS  Google Scholar 

  6. N. A. Wibowo, C. F. Irawan, and A. Setiawan, J. Phys.: Conf. Ser. 1153, 012054 (2019). https://doi.org/10.1088/1742-6596/1153/1/012054

    Article  Google Scholar 

  7. W. J. Takei, D. Cox, and G. Shirane, Phys. Rev. 129, 2008 (1963). https://doi.org/10.1103/PhysRev.129.2008

    Article  ADS  Google Scholar 

  8. G. Markandeyulu and K. V. S. Rama Rao, J. Magn. Magn. Mater. 67, 215 (1987). https://doi.org/10.1016/0304-8853(87)90233-2

  9. Y. Pan and G. Sun, Scr. Mater. 41, 803 (1999). https://doi.org/10.1016/S1359-6462(99)00228-6

    Article  Google Scholar 

  10. I. Teramoto and A. M. J. G. van Run, J. Phys. Chem. Solids 29, 347 (1968). https://doi.org/10.1016/0022-3697(68)90080-2

    Article  ADS  Google Scholar 

  11. T. Chen, G. B. Charlan, and R. C. Keezer, J. Cryst. Growth 37, 29 (1977). https://doi.org/10.1016/0022-0248(77)90140-3

    Article  ADS  Google Scholar 

  12. G. Y. Iwamoto, C. de Arruda Rodriges, L. A. de Sousa Iwamoto, and R. de Almeida Vieira, Mater. Res. 22, e20180647 (2019). https://doi.org/10.1590/1980-5373-MR-2018-0647

    Article  Google Scholar 

  13. V. M. Novotortsev, A. V. Kochura, S. F. Marenkin, I. V. Fedorchenko, S. V. Drogunov, A. Lashkul, and E. Lähderanta, Russ. J. Inorg. Chem. 56, 1951 (2011).

    Article  Google Scholar 

  14. Y. Umehara and S. Koda, Metallography 7, 313 (1974). https://doi.org/10.1016/0026-0800(74)90012-3

    Article  Google Scholar 

  15. I. Kh. Mamedov, D. G. Arasly, A. A. Khalilova, and R. N. Ragimov, Inorg. Mater. 52, 423 (2016). https://doi.org/10.1134/S0020168516040105

    Article  Google Scholar 

  16. K.-D. Durst, and H. Kronmüller, J. Magn. Magn. Mater. 59, 86 (1986). https://doi.org/10.1016/0304-8853(86)90014-4

    Article  ADS  Google Scholar 

  17. F. B. Mushenok, A. I. Dmitriev, M. V. Kirman, S. M. Aldoshin, N. A. Sanina, and R. B. Morgunov, Phys. Solid State 52, 2135 (2010). https://doi.org/10.1134/S1063783410100197

    Article  ADS  Google Scholar 

  18. A. B. Drovosekov, N. M. Kreines, A. S. Barkalova, S. N. Nikolaev, V. V. Rylkov, and A. V. Sitnikov, J. Magn. Magn. Mater. 495, 165875 (2020). https://doi.org/10.1016/j.jmmm.2019.165875

    Article  Google Scholar 

  19. N. Akulov, Z. Phys. 100, 197 (1936). https://doi.org/10.1007/BF01418601

    Article  ADS  Google Scholar 

  20. C. Zener, Phys. Rev. 96, 1335 (1954). https://doi.org/10.1103/PhysRev.96.1335

    Article  ADS  Google Scholar 

  21. H. B. Callen and E. Callen, J. Phys. Chem. Solids 27, 1271 (1966). https://doi.org/10.1016/0022-3697(66)90012-6

    Article  ADS  Google Scholar 

  22. B. Schulz and K. Baberschke, Phys. Rev. B 50, 13467 (1994). https://doi.org/10.1103/PhysRevB.50.13467

    Article  ADS  Google Scholar 

  23. L. Baselgia, M. Warden, F. Waldner, S. L. Hutton, J. E. Drumheller, Y. Q. He, P. E. Wigen, and M. Maryško, Phys. Rev. B 38, 2237 (1988). https://doi.org/10.1103/PhysRevB.38.2237

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.V. Kulikov for recording the FMR spectra and R.B. Morgunov for useful remarks.

Funding

This study was performed within the framework of state contract no. 0851-2020-0035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Dmitriev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, A.I., Kochura, A.V., Marenkin, S.F. et al. Magnetic Anisotropy of Needlelike Single-Crystal MnSb Inclusions in an InSb Matrix. Tech. Phys. Lett. 47, 490–493 (2021). https://doi.org/10.1134/S1063785021050205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785021050205

Keywords:

Navigation