Skip to main content
Log in

A Photoconductive THz Detector Based on a Superlattice Heterostructure with Plasmonic Amplification

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

A highly sensitive terahertz (THz) detector based on a photoconductive antenna (PCA) with plasmonic amplification on the basis of an InGaAs/InAlAs superlattice heterostructure is proposed. A noticeable increase in the photocurrent recorded by a plasmonic PCA detector and the signal-to-noise ratio was experimentally detected compared to the same parameters for the PCA detector without plasmonic electrodes. The efficiency of plasmonic electrodes has been experimentally confirmed by pulsed THz spectroscopy by measuring the dependence of the detector’s THz signal amplitude on the polarization of the incident pump laser radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. B. Globisch, R. J. B. Dietz, R. B. Kohlhaas, T. Gobel, M. Schell, D. Alcer, M. Semtsiv, and W. T. Masselink, J. Appl. Phys. 121, 053102 (2017).

    Article  ADS  Google Scholar 

  2. A. M. Buryakov, D. I. Khusyainov, E. D. Mishina, R. A. Khabibullin, A. E. Yachmenev, and D. S. Ponomarev, Tech. Phys. Lett. 44, 1115 (2018).

    Article  ADS  Google Scholar 

  3. D. Khusyainov, A. M. Buryakov, V. R. Bilyk, E. D. Mi-shina, D. S. Ponomarev, R. A. Khabibullin, and A. E. Yachmenev, Tech. Phys. Lett. 43, 1020 (2017).

    Article  ADS  Google Scholar 

  4. N. T. Yardimci and M. Jarrahi, Sci. Rep. 7, 42667 (2017).

    Article  ADS  Google Scholar 

  5. www.batop.de/products/terahertz/photoconductive-antenna/ photoconductive-antenna-1550nm.html.

  6. A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, Appl. Phys. Lett. 90, 101119 (2007).

    Article  ADS  Google Scholar 

  7. A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, Appl. Phys. Lett. 91, 011102 (2007).

    Article  ADS  Google Scholar 

  8. C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevičus, Appl. Phys. Lett. 82, 3913 (2003).

    Article  ADS  Google Scholar 

  9. M. Suzuki and M. Tonouchi, Appl. Phys. Lett. 86, 051104 (2005).

    Article  ADS  Google Scholar 

  10. C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, Appl. Phys. Lett. 96, 194104 (2010).

    Article  ADS  Google Scholar 

  11. N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, Appl. Phys. Lett. 87, 193510 (2005).

    Article  ADS  Google Scholar 

  12. D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, Appl. Phys. Lett. 86, 051908 (2005).

    Article  ADS  Google Scholar 

  13. R. J. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, Opt. Express 22, 19411 (2014).

    Article  ADS  Google Scholar 

  14. R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, Appl. Phys. Lett. 103, 061103 (2013).

    Article  ADS  Google Scholar 

  15. D. S. Ponomarev, A. Gorodetsky, A. E. Yachmenev, S. S. Pushkarev, R. A. Khabibullin, M. M. Grekhov, K. I. Zaytsev, D. I. Khusyainov, A. M. Buryakov, and E. D. Mishina, J. Appl. Phys. 125, 151605 (2019).

    Article  ADS  Google Scholar 

  16. S. Lepeshov, A. Gorodetsky, A. Krasnok, E. Rafailov, and P. Belov, Laser Photon. Rev. 11, 1600199 (2017).

    Article  ADS  Google Scholar 

  17. D. V. Lavrukhin, A. E. Yachmenev, I. A. Glinskiy, R. A. Khabibullin, Y. G. Goncharov, M. Ryzhii, T. Otsuji, I. E. Spector, M. Shur, M. Skorobogatiy, K. I. Zay-tsev, and D. S. Ponomarev, AIP Adv. 9, 015112 (2019).

    Article  ADS  Google Scholar 

  18. D. V. Lavrukhin, A. E. Yachmenev, I. A. Glinskii, N. V. Zenchenko, R. A. Khabibullin, Yu. G. Goncharov, I. E. Spektor, K. I. Zaitsev, and D. S. Ponomarev, Opt. Spectrosc. 129 (2020, in press).

  19. N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, J. Infrared Millimeter Terahertz Waves 35, 823 (2014).

    Article  Google Scholar 

  20. D. V. Lavrukhin, R. R. Galiev, A. Yu. Pavlov, A. E. Yachmenev, M. V. Maitama, I. A. Glinskii, R. A. Khabibullin, Yu. G. Goncharov, K. I. Zaytsev, and D. S. Ponomarev, Opt. Spectrosc. 126, 580 (2019).

    Article  Google Scholar 

Download references

Funding

This study was carried out with the financial support of the Ministry of Education and Science of the Russian Federation (state order no. FSFZ-0706-2020-0022; experimental studies of temporal and spectral characteristics of THz radiation) and the Russian Foundation for Basic Research (project no. 20-32-70129; manufacturing and general characterization of samples).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Gorbatova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbatova, A.V., Khusyainov, D.I., Yachmenev, A.E. et al. A Photoconductive THz Detector Based on a Superlattice Heterostructure with Plasmonic Amplification. Tech. Phys. Lett. 46, 1111–1115 (2020). https://doi.org/10.1134/S1063785020110218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785020110218

Keywords:

Navigation