Skip to main content
Log in

Photoconductive THz Detector Based on New Functional Layers in Multi-Layer Heterostructures

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Characteristics of photoconductive antennas (PCAs) based on InGaAs/InAs/InAlAs superlattice heterostructures exhibiting different types of elastic strain in the layers are compared experimentally. THz signals, noise characteristics, and signal-to-noise ratios of the PCA-detectors were compared by means of a laboratory pulsed time-domain THz spectrometer at different levels of average optical-probe power. A larger detection bandwidth in entire range of probe power is demonstrated experimentally for PCA-detectors based on superlattice heterostructures exhibiting both compressive and tensile strain compared to lattice-matched superlattice heterostructures. It can thus be stated that modification of properties of superlattice heterostructures by introducing strain in the crystal lattice represents a universal and relatively efficient method of improving characteristics of PCAs based on such heterostructures, which allows using these PCAs for development of THz spectroscopy and imaging systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. K. I. Zaytsev, I. N. Dolganova, N. V. Chernomyrdin, G. M. Katyba, A. A. Gavdush, O. P. Cherkasova, G. Komandin, M. A. Shchedrina, A. N. Khodan, D. S. Ponomarev, I. V. Reshetov, V. Karasik, M. Skorobogatiy, V. N. Kurlov, and V. V. Tuchin, J. Opt. 22, 013001 (2019).

    Article  ADS  Google Scholar 

  2. O. A. Smolyanskaya, N. V. Chernomyrdin, A. A. Konovko, K. I. Zaytsev, I. A. Ozheredov, O. P. Cherkasova, M. M. Nazarov, J. P. Guilleti, S. A. Kozlova, Yu. V. Kistenev, J.-L. Coutaz, P. Mounaix, V. L. Vaks, J.-H. Son, H. Cheon, et al., Prog. Quantum Electron. 62, 1 (2018).

    Article  ADS  Google Scholar 

  3. R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, J. Invest. Dermatol. 120, 72 (2003).

    Article  Google Scholar 

  4. V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, Brit. J. Dermatol. 151, 424 (2004).

    Article  Google Scholar 

  5. C. B. Reid, A. Fitzgerald, G. Reese, R. Goldin, P. Tekkis, and P. S. O’Kelly, Phys. Med. Biol. 56, 4333 (2011).

    Article  Google Scholar 

  6. P. Doradla, K. Alavi, C. S. Joseph, and R. H. Giles, J. Biomed. Opt. 18, 090504 (2013).

    Article  Google Scholar 

  7. D. Hou, X. Li, J. Cai, Y. Ma, X. Kang, P. Huang, and G. Zhang, Phys. Med. Biol. 59, 5423 (2014).

    Article  Google Scholar 

  8. A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, Radiology 239, 533 (2006).

    Article  Google Scholar 

  9. S. Oh, S. H. Kim, Y. B. Ji, K. Jeong, Y. Park, J. Yang, D. W. Park, S. K. Noh, S. G. Kang, Y. M. Huh, J. H. Son, and J. S. Suh, Biomed. Opt. Express 5, 2837 (2014).

    Article  Google Scholar 

  10. A. E. Yachmenev, D. V. Lavrukhin, I. A. Glinskiy, N. V. Zenchenko, Y. G. Goncharov, I. E. Spektor, R. A. Khabibullin, T. Otsuji, and D. S. Ponomarev, Opt. Eng. 59, 061608 (2019).

    Article  ADS  Google Scholar 

  11. P. K. Lu, D. Turan, and M. Jarrahi, Opt. Express 28, 26324 (2020).

    Article  ADS  Google Scholar 

  12. A. E. Yachmenev, S. S. Pushkarev, R. R. Reznik, R. A. Khabibullin, and D. S. Ponomarev, Prog. Cryst. Growth Charact. Mater. 66, 100485 (2020).

    Article  Google Scholar 

  13. M. Nagai and K. Tanaka, Appl. Phys. Lett. 85, 3974 (2004).

    Article  ADS  Google Scholar 

  14. I. E. Ilyakov, G. Kh. Kitaeva, B. V. Shishkin, and R. A. Akhmedzhanov, Opt. Lett. 42, 1704 (2017).

    Article  ADS  Google Scholar 

  15. A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, Appl. Phys. Lett. 74, 1516 (1999).

    Article  ADS  Google Scholar 

  16. Y. Zhang, X. Zhang, S. Li, J. Gu, Y. Li, Z. Tian, C. Ouyang, M. He, J. Han, and W. Zhang, Sci. Rep. 6, 1 (2016).

    Article  Google Scholar 

  17. T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi, Opt. Express 21, 23736 (2013).

    Article  ADS  Google Scholar 

  18. S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, Nat. Photon. 5, 306 (2011).

    Article  ADS  Google Scholar 

  19. I. E. Ilyakov, B. V. Shishkin, V. L. Malevich, D. S. Ponomarev, R. R. Galiev, A. E. Yachmenev, S. P. Kovalev, M. Chen, R. A. Akh-medzhanov, and R. A. Khabibullin, Optics Letters (in press).

  20. A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, Appl. Phys. Lett. 91, 011102 (2007).

    Article  ADS  Google Scholar 

  21. R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).

    Article  ADS  Google Scholar 

  22. N. Chimot, J. Mangeney, P. Mounaix, M. Tondusson, K. Blary, and J. F. Lampin, Appl. Phys. Lett. 89, 083519 (2006).

    Article  ADS  Google Scholar 

  23. M. Suzuki and M. Tonouchi, Appl. Phys. Lett. 86, 163504 (2005).

    Article  ADS  Google Scholar 

  24. S.-P. Han, H. Ko, N. Kim, H.-C. Ryu, C. W. Lee, Y. A. Leem, D. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, Opt. Lett. 36, 3094 (2011).

    Article  ADS  Google Scholar 

  25. F. Ospald, D. Maryenko, K. Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, Appl. Phys. Lett. 92, 131117 (2008).

    Article  ADS  Google Scholar 

  26. R. J. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, Opt. Express 22, 19411 (2014).

    Article  ADS  Google Scholar 

  27. D. S. Ponomarev, A. Gorodetsky, A. E. Yachmenev, S. S. Pushkarev, R. A. Khabibullin, M. M. Grekhov, K. I. Zaytsev, D. I. Khusyainov, A. M. Buryakov, and E. D. Mishina, J. Appl. Phys. 125, 151605 (2019).

    Article  ADS  Google Scholar 

  28. D. S. Ponomarev, A. E. Yachmenev, I. A. Glinskiy, R. A. Khabibullin, D. I. Khusyainov, A. M. Buryakov, and E. D. Mishina, Proc. SPIE 11457, 114571A (2019).

    Google Scholar 

  29. F. Ospald, D. Maryenko, K. Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, Appl. Phys. Lett. 92, 131117 (2008).

    Article  ADS  Google Scholar 

  30. D. S. Ponomarev, A. E. Yachmenev, I. A. Glinskiy, R. A. Khabibullin, D. I. Khusyainov, A. M. Buryakov, and E. D. Mishina, Proc. SPIE 11457, 114571A (2019).

    Google Scholar 

  31. A. Buryakov, D. Khusyainov, E. Mishina, A. Yachmenev, R. Khabibullin, and D. Ponomarev, MRS Adv. 4, 15 (2019).

    Article  Google Scholar 

  32. V. A. Kulbachinskii, N. A. Yuzeeva, G. B. Galiev, E. A. Klimov, I. S. Vasil’evskii, R. A. Khabibullin, and D. S. Ponomarev, Semicond. Sci. Technol. 27, 035021 (2012).

    Article  ADS  Google Scholar 

  33. Y. C. Chen, P. K. Bhattacharya, and J. Singh, J. Cryst. Growth 111, 228 (1991).

    Article  ADS  Google Scholar 

  34. D. V. Lavrukhin, A. E. Yachmenev, I. A. Glinskiy, R. A. Khabibullin, Y. Goncharov, M. Ryzhii, T. Otsuji, I. E. Spector, M. Shur, M. Skorobogatiy, K. I. Zaytsev, and D. S. Ponomarev, AIP Adv. 9, 015112 (2019).

    Article  ADS  Google Scholar 

  35. D. V. Lavrukhin, A. E. Yachmenev, A. Yu. Pavlov, R. A. Khabibullin, Yu. G. Goncharov, I. E. Spektor, G. A. Komandin, S. O. Yurchenko, N. V. Chernomyrdin, K. I. Zaytsev, and D. S. Ponomarev, Semicond. Sci. Technol. 34, 034005 (2019).

    Article  ADS  Google Scholar 

  36. D. V. Lavrukhin, R. R. Galiev, A. Yu. Pavlov, A. E. Yachmenev, M. V. Maytama, I. A. Glinskiy, R. A. Khabibullin, Yu. G. Goncharov, K. I. Zaytsev, and D. S. Ponomarev, Opt. Spectrosc. 126, 580 (2019).

    Article  Google Scholar 

  37. X. C. Zhang, P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, J. Opt. Soc. Am. B 13, 2424 (1996).

    Article  ADS  Google Scholar 

  38. N. Wang and M. Jarrahi, J. Infrared Millimeter Terahertz Waves 34, 519 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Profs. A. Abakumov and Ya. Shakhova for carrying out TEM measurements at the Advanced Imaging Core Facility of Skolkovo Institute of Science and Technology.

Funding

This research was supported by Russian Science Foundation, project no. 18-79-10195.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Yachmenev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yachmenev, A.E., Lavrukhin, D.V., Khabibullin, R.A. et al. Photoconductive THz Detector Based on New Functional Layers in Multi-Layer Heterostructures. Opt. Spectrosc. 129, 851–856 (2021). https://doi.org/10.1134/S0030400X21060187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X21060187

Keywords:

Navigation