Skip to main content
Log in

The Effect of Annealing and Additional Deformation on the Mechanical Properties of Ultrafine-Grained Al–1.5Cu Alloy

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

We studied mechanical properties of the ultrafine-grained (UFG) alloy of Al–1.5 Cu (wt %). UFG structure has been formed by processing the alloy by high-pressure torsion (НРТ). The UFG alloy shows high values of microhardness (1690 MPa), yield stress (515 MPa), and ultimate tensile strength (655 MPa), but low ductility (~3%). Short-term annealing at 150°C and the subsequent small HPT deformation of 0.25 turns at RT have led only to a slight decrease in the alloy should be replaced by strength to 450 MPa, which was ~70% of the value before annealing, but provided high plasticity (~22%). This implies a high potential for practical application of the alloy under study. The proposed approach may serve as a universal effective way to achieve a combination of high strength and high plasticity for various UFG materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000). https://doi.org/10.1016/S0079-6425(99)00007-9

    Article  Google Scholar 

  2. A. P. Zhilyaev and T. G. Langdon, Prog. Mater. Sci. 53, 893 (2008). https://doi.org/10.1016/j.pmatsci.2008.03.002

    Article  Google Scholar 

  3. A. M. Mavlyutov, T. A. Latynina, M. Yu. Murashkin, R. Z. Valiev, and T. S. Orlova, Phys. Solid State 59, 1970 (2017). https://doi.org/10.21883/FTT.2017.10.44964.094

    Article  ADS  Google Scholar 

  4. X. Huang, N. Hansen, and N. Tsuji, Science (Washington, DC, U. S.) 312, 249 (2006). https://doi.org/10.1126/science.1124268

    Article  ADS  Google Scholar 

  5. N. Kamikawa, X. Huang, N. Tsuji, and N. Hansen, Acta Mater. 57, 4198 (2009). https://doi.org/10.1016/j.actamat.2009.05.017

    Article  Google Scholar 

  6. T. S. Orlova, N. V. Skiba, A. M. Mavlyutov, R. Z. Valiev, M. Y. Murashkin, and M. Y. Gutkin, Rev. Adv. Mater. Sci. 57, 224 (2018). https://doi.org/10.1515/rams-2018-0068

    Article  Google Scholar 

  7. M. A. Abdulstaar, E. A. El-Danaf, N. S. Waluyo, and L. Wagner, Mater. Sci. Eng., A 565, 351 (2013). https://doi.org/10.1016/j.msea.2012.12.046

    Article  Google Scholar 

  8. E. A. El-Danaf, M. S. Soliman, A. A. Almajid, and M. M. El-Rayes, Mater. Sci. Eng., A 458, 226 (2007). https://doi.org/10.1016/j.msea.2006.12.077

    Article  Google Scholar 

  9. X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, and M. Murashkin, Acta Mater. 72, 125 (2014). https://doi.org/10.1016/j.actamat.2014.03.033

    Article  Google Scholar 

  10. G. Nurislamova, X. Sauvage, M. Murashkin, R. Islamgaliev, and R. Valiev, Philos. Mag. Lett. 88, 459 (2008). https://doi.org/10.1080/09500830802186938

    Article  ADS  Google Scholar 

  11. R. Z. Valiev, M. Yu. Murashkin, and I. Sabirov, Scr. Mater. 76, 13 (2014). https://doi.org/10.1016/j.scriptamat.2013.12.002

    Article  Google Scholar 

  12. T. A. Latynina, A. M. Mavlyutov, M. Yu. Murashkin, and R. Z. Valiev, Philos. Mag. 99, 2424 (2019). https://doi.org/10.1080/14786435.2019.1631501

    Article  ADS  Google Scholar 

  13. Y. Nasedkina, X. Sauvage, E. V. Bobruk, M. Y. Murashkin, R. Z. Valiev, and N. A. Enikeev, J. Alloys Compd. 710, 736 (2017). https://doi.org/10.1016/j.jallcom.2017.03.312

    Article  Google Scholar 

  14. L. Jiang, J. K. Li, P. M. Cheng, G. Liu, R. H. Wang, B. A. Chen, J. Y. Zhang, J. Sun, M. X. Yang, and G. Yang, Sci. Rep. 4, 3605 (2014). https://doi.org/10.1038/srep03605

    Article  ADS  Google Scholar 

  15. Y. Chen, N. Gao, G. Sha, S. P. Ringer, and M. J. Starink, Acta Mater. 109, 202 (2016). https://doi.org/10.1016/j.actamat.2016.02.050

    Article  Google Scholar 

  16. H. Jia, R. Bjørge, L. Cao, H. Song, K. Marthinsen, and Y. Li, Acta Mater. 155, 199 (2018). https://doi.org/10.1016/j.actamat.2018.05.075

    Article  Google Scholar 

  17. A. Hohenwarter, M. Faller, B. Rashkova, and R. Pippan, Philos. Mag. Lett. 94, 342 (2014). https://doi.org/10.1080/09500839.2014.907508

    Article  ADS  Google Scholar 

  18. T. Shanmugasundaram, B. S. Murty, and V. S. Sarma, Scr. Mater. 54, 2013 (2006). https://doi.org/10.1016/j.scriptamat.2006.03.012

    Article  Google Scholar 

  19. L. F. Mondolfo, Aluminum Alloys: Structure and Properties (Elsevier, Amsterdam, 2013).

    Google Scholar 

  20. G. Sha, L. Yao, X. Liao, S. P. Ringer, Z. C. Duan, and T. G. Langdon, Ultramicroscopy 111, 500 (2011). https://doi.org/10.1016/j.ultramic.2010.11.013

    Article  Google Scholar 

Download references

Funding

A. Mavlyutov thanks the Russian Science Foundation (grant no. 19-79-00114) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Orlova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mavlyutov, A.M., Orlova, T.S. & Yapparova, E.K. The Effect of Annealing and Additional Deformation on the Mechanical Properties of Ultrafine-Grained Al–1.5Cu Alloy. Tech. Phys. Lett. 46, 916–920 (2020). https://doi.org/10.1134/S1063785020090266

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785020090266

Keywords:

Navigation