Skip to main content
Log in

Influence of Deformation Temperature on the Effect of High Plasticity Implementation in Ultrafine-Grained Al–1.5Cu Alloy

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of the temperature of uniaxial tensile test on the plastification effect (PE) of ultrafine-grained (UFG) Al–1.5Cu (wt %) alloy is studied for the first time. The UFG structure in a material is formed by high-pressure torsion (HPT). A significant increase in the plasticity of an UFG alloy from ~3 to 22% while retaining a high ultimate tensile strength (450 MPa) is achieved due to additional thermomechanical treatment including short-term low-temperature annealing and subsequent small HPT deformation. The temperature range of the PE implementation is revealed. It is shown that a decrease in the deformation temperature results in a gradual decrease in the PE and its disappearance at –20°C. Copper doping results in significant narrowing of the PE implementation range from the low-temperature side in comparison with the UFG Al case. The possible causes of the effect of Cu doping on the temperature dependence of the PE is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. F. Mondolfo, Aluminum Alloys: Structure and Properties (Elsevier, Amsterdam, 2013).

    Google Scholar 

  2. R. Z. Valiev, A. P. Zhilyaev, and T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications (Wiley, New York, 2013).

    Book  Google Scholar 

  3. X. Huang, N. Hansen, and N. Tsuji, Science (Washington, DC, U. S.) 312, 249 (2006).

    Article  ADS  Google Scholar 

  4. A. M. Mavlyutov, T. A. Latynina, M. Yu. Murashkin, R. Z. Valiev, and T. S. Orlova, Phys. Solid State 59, 1970 (2017).

    Article  ADS  Google Scholar 

  5. T. S. Orlova, N. V. Skiba, A. M. Mavlyutov, R. Z. Vaiev, M. Y. Murashkin, and M. Y. Gutkin, Rev. Adv. Mater. Sci. 57, 224 (2018).

    Article  Google Scholar 

  6. A. M. Mavlyutov, T. S. Orlova, and E. Kh. Yapparova, Tech. Phys. Lett. 46, 916 (2020).

    Article  ADS  Google Scholar 

  7. T. S. Orlova, A. M. Mavlyutov, and M. Y. Gutkin, Mater. Sci. Eng. A 802, 140588 (2021).

    Article  Google Scholar 

  8. A. P. Zhilyaev and T. G. Langdon, Prog. Mater. Sci. 53, 893 (2008).

    Article  Google Scholar 

  9. G. K. Williamson and R. E. Smallman, Philos. Mag. 1, 34 (1956).

    Article  ADS  Google Scholar 

  10. J. E. Hatch, Aluminum: Properties and Physical Metallurgy (ASM Int., Metals Park, OH, 1984).

    Google Scholar 

  11. T. S. Orlova, A. M. Mavlyutov, A. S. Bondarenko, I. A. Kasatkin, M. Y. Murashkin, and R. Z. Valiev, Philos. Mag. 96, 2429 (2016).

    Article  ADS  Google Scholar 

  12. R. Z. Valiev, M. Yu. Murashkin, and I. Sabirov, Sci. Mater. 76, 13 (2014).

    Google Scholar 

  13. A. M. Mavlyutov, A. S. Bondarenko, M. Yu. Murashkin, E. V. Boltynjuk, R. Z. Valiev, and T. S. Orlova, J. Alloys Compd. 698, 539 (2017).

    Article  Google Scholar 

  14. T. S. Orlova, T. A. Latynina, A. M. Mavlyutov, M. Y. Murashkin, and R. Z. Valiev, J. Alloys Compd. 784, 41 (2019).

    Article  Google Scholar 

  15. T. A. Latynina, A. M. Mavlyutov, M. Yu. Murashkin, R. Z. Valiev, and T. S. Orlova, Philos. Mag. 99, 2424 (2019).

    Article  ADS  Google Scholar 

  16. A. M. Mavlyutov, I. A. Kasatkin, M. Yu. Murashkin, R. Z. Valiev, and T. S. Orlova, Phys. Solid State 57, 2051 (2015).

    Article  ADS  Google Scholar 

  17. A. M. Mavlyutov, T. S. Orlova, T. A. Latynina, I. A. Kasatkin, M. Y. Murashkin, and R. Z. Vaiev, Rev. Adv. Mater. Sci. 52, 61 (2017).

    Google Scholar 

  18. R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials (Wiley, New York, 1989).

    Google Scholar 

  19. E. O. Hall, Proc. Phys. Soc. B 64, 747 (1951).

    Article  ADS  Google Scholar 

  20. N. J. Petch, Acta Crystallogr. 6, 96 (1953).

    Article  Google Scholar 

  21. N. Kamikawa, X. Huang, N. Tsuji, and N. Hansen, Acta Mater. 57, 4198 (2009).

    Article  ADS  Google Scholar 

  22. N. Hansen and X. Huang, Acta Mater. 46, 1827 (1998).

    Article  ADS  Google Scholar 

  23. F. R. N. Nabarro, Z. S. Basinski, and D. B. Holt, Adv. Phys. 13, 193 (1964).

    Article  ADS  Google Scholar 

  24. I. I. Novikov, Theory of Heat Treatment of Metals (Metallurgiya, Moscow, 1975) [in Russian].

    Google Scholar 

  25. O. R. Myhr, O. Grong, and S. J. Andersen, Acta Mater. 49, 65 (2001).

    Article  ADS  Google Scholar 

  26. G. J. Mahon and G. J. Marshall, J. Mater. 48, 39 (1996).

    Google Scholar 

  27. L. M. Brown and R. K. Ham, Strengthening Methods in Crystals (Appl. Sci., London, 1971).

    Google Scholar 

  28. P. B. Hirsch and F. J. Humphreys, Physics of Strength and Plasticity (AS Argon, 1969).

    Google Scholar 

  29. H. Asgharzadeh, A. Simchi, and H. S. Kim, Mater. Sci. Eng. A 528, 3981 (2011).

    Article  Google Scholar 

  30. H. Asgharzadeh, A. Simchi, and H. S. Kim, Metall. Mater. Trans. A 42, 816 (2011).

    Article  Google Scholar 

  31. T. D. Topping, B. Ahn, Y. Li, S. R. Nutt, and E. J. Lavernia, Metall. Mater. Trans. A 43, 505 (2012).

    Article  Google Scholar 

  32. P. L. Rossiter, The Electrical Resistivity of Metals and Alloys (Cambridge Univ. Press, Cambridge, 2003).

    Google Scholar 

  33. Y. Miyajima, S. Y. Komatsu, M. Mitsuhara, S. Hata, H. Nakashima, and N. Tsuji, Philos. Mag. 90, 4475 (2010).

    Article  ADS  Google Scholar 

  34. Japan KOMATSU, Technical specification on hardenability of Boron Steel, N. KES (KNOW HOW) 07.216.2, pp. 2–11 (1992).

  35. A. S. Karolik and A. A. Luchvich, J. Phys.: Condens. Matter 6, 873 (1994).

    ADS  Google Scholar 

  36. Physical Metallurgy, Ed. by R. W. Cahn and P. Haasen (North-Holland, Amsterdam, 1983).

    Google Scholar 

  37. M. Mito, H. Matsui, T. Yoshida, T. Anami, K. Tsuruta, H. Deguchi, T. Iwamoto, D. Terada, Y. Miyajima, and N. Tsuji, Rev. Sci. Instrum. 87, 053905 (2016).

    Article  Google Scholar 

  38. Y. Nasedkina, X. Sauvage, E. V. Bobruk, M. Y. Murashkin, R. Z. Valiev, and N. A. Enikeev, J. Alloys Compd. 710, 736 (2017).

    Article  Google Scholar 

  39. G. Nurislamova, X. Sauvage, M. Murashkin, R. Islamgaliev, and R. Z. Valiev, Philos. Mag. Lett. 88, 459 (2008).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

X-ray diffraction studies were performed using the equipment of the Research Centre for X-ray Diffraction Studies of the St. Petersburg State University.

Funding

A.M. Mavlyutov and E.Kh. Yapparova acknowledge the support of the Russian Science Foundation (project no. 19-79-00114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Mavlyutov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mavlyutov, A.M., Orlova, T.S., Yapparova, E.K. et al. Influence of Deformation Temperature on the Effect of High Plasticity Implementation in Ultrafine-Grained Al–1.5Cu Alloy. Phys. Solid State 63, 1730–1738 (2021). https://doi.org/10.1134/S1063783421100255

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421100255

Keywords:

Navigation