Skip to main content
Log in

Planar Capacitive Structures Based on Ferroelectric Barium Titanate–Stannate Films on Sapphire for Microwave Applications

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The structural properties of ferroelectric barium titanate–stannate films on sapphire substrates and microwave characteristics of related planar capacitive elements have been investigated. The gas-medium composition during the film deposition has been established to affect significantly the crystal structure, phase composition, and electric characteristics of the films. The low dielectric loss and high controllability of planar capacitive elements based on barium titanate–stannate films in the frequency range of 2–60 GHz are demonstrated for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Gevorgian, Ferroelectrics in Microwave Devices, Circuits and Systems (Springer, London, 2009). https://doi.org/10.1007/978-1-84882-507-9

    Book  Google Scholar 

  2. O. G. Vendik, N. Yu. Medvedeva, and S. P. Zubko, Phys. Solid State 51, 1492 (2009). https://doi.org/10.1134/S1063783409070543

    Article  ADS  Google Scholar 

  3. C. Luo, J. Ji, F. Ling, D. Li, and J. Yao, J. Alloys Compd. 687, 458 (2016). https://doi.org/10.1016/j.jallcom.2016.05.324

    Article  Google Scholar 

  4. C. J. G. Meyers, C. R. Freeze, S. Stemmer, and R. A. York, Appl. Phys. Lett. 109, 112902 (2016). https://doi.org/10.1063/1.4961626

    Article  ADS  Google Scholar 

  5. L. R. Song, Y. Chen, G. S. Wang, L. H. Yang, J. Ge, X. L. Dong, P. H. Xiang, Y. Y. Zhang, and X. D. Tang, J. Am. Ceram. Soc. 97, 3048 (2014). https://doi.org/10.1111/jace.13218

    Article  Google Scholar 

  6. A. V. Tumarkin, A. G. Gagarin, A. G. Altynnikov, M. M. Gaidukov, A. A. Odinets, S. V. Razumov, and A. B. Kozyrev, Thin Solid Films 593, 189 (2015). https://doi.org/10.1016/j.tsf.2015.09.057

    Article  ADS  Google Scholar 

  7. A. V. Tumarkin, V. M. Stozharov, A. G. Altynnikov, A.  G. Gagarin, S. V. Razumov, E. Y. Kaptelov, S.  V.  Senkevich, I. P. Pronin, and A. B. Kozyrev, Integr. Ferroelectr. 173, 140 (2016). https://doi.org/10.1080/10584587.2016.1187055

    Article  Google Scholar 

  8. M. Wu, C. Zhang, S. Yu, and L. Li, Ceram. Int. 44, 11466 (2018). https://doi.org/10.1016/j.ceramint.2018.03.208

    Article  Google Scholar 

  9. S. Hoffmann and R. M. Waser, Integr. Ferroelectr. 17, 141 (1997). https://doi.org/10.1080/10584589708012989

    Article  Google Scholar 

  10. J. F. Ihlefeld, W. J. Borland, and J.-P. Maria, J. Mater. Sci. 43, 4264 (2008). https://doi.org/10.1007/s10853-008-2618-x

    Article  ADS  Google Scholar 

  11. S. Song, J. Zhai, L. Gao, and X. Yao, Appl. Phys. Lett. 94, 052902 (2009). https://doi.org/10.1063/1.3073743

    Article  ADS  Google Scholar 

  12. L. Gao, J. Zhai, S. Song, and X. Yao, Mater. Chem. Phys. 124, 192 (2010). https://doi.org/10.1016/j.matchemphys.2010.06.018

    Article  Google Scholar 

  13. M. Wu, C. Zhang, S. Yu, and L. Li, Ceram. Int. 44, 10236 (2018). https://doi.org/10.1016/j.ceramint.2018.03.026

    Article  Google Scholar 

  14. H. Huang, M. Wang, C. Chen, N. Wu, and H. Lin, J. Eur. Ceram. Soc. 26, 3211 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.09.109

    Article  Google Scholar 

  15. S. Song, L. Gao, J. Zhai, X. Yao, and Z. Cheng, Appl. Surf. Sci. 254, 5120 (2008). https://doi.org/10.1016/j.apsusc.2008.02.002

    Article  ADS  Google Scholar 

  16. S. Song, J. Zhai, and X. Yao, Mater. Res. Bull. 43, 2374 (2008). https://doi.org/10.1016/j.materresbull.2007.08.006

    Article  Google Scholar 

  17. S. V. Razumov, A. V. Tumarkin, M. M. Gaidukov, A. G. Gagarin, A. B. Kozyrev, O. G. Vendik, A. V. Ivanov, O. U. Buslov, V. N. Keys, L. C. Sengupta, and X. Zhang, Appl. Phys. Lett. 81, 1675 (2002). https://doi.org/10.1063/1.1499987

    Article  ADS  Google Scholar 

  18. A. V. Tumarkin, M. V. Zlygostov, A. G. Gagarin, and E. N. Sapego, Tech. Phys. Lett. 44, 1077 (2018). https://doi.org/10.21883/PJTF.2018.23.47011.17476

    Article  ADS  Google Scholar 

  19. A. V. Tumarkin, V. A. Volpyas, M. V. Zlygostov, A. A. Odinets, and E. N. Sapego, Bull. Russ. Akad. Sci.: Phys. 82, 346 (2018). https://doi.org/10.7868/S0367676518030304

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 18-79-10156) and Ministry of Education and Science of the Russian Federation (state contract no. 3.3990.2017/4.6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tumarkin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tumarkin, A.V., Zlygostov, M.V., Gagarin, A.G. et al. Planar Capacitive Structures Based on Ferroelectric Barium Titanate–Stannate Films on Sapphire for Microwave Applications. Tech. Phys. Lett. 45, 639–642 (2019). https://doi.org/10.1134/S1063785019070137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785019070137

Keywords:

Navigation