Skip to main content
Log in

The Influence of Cavity Design on the Linewidth of Near-IR Single-Mode Vertical-Cavity Surface-Emitting Lasers

  • Near-IR Vertical-Cavity Surface-Emitting Lasers (Special Issue)
  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The studies of the emission linewidth for single-mode near-IR vertical-cavity surface-emitting lasers with an active region based on InGaAs/AlGaAs quantum wells and different optical microcavity design. For low mirror loss, lasers with a 1λ cavity and carrier injection through distributed Bragg reflectors demonstrate a linewidth of 70 MHz and its growth to 110 MHz with increasing mirror loss (corresponding differential of efficiency ∼0.65 W/A). The design of the optical cavity with carrier injection through intracavity contacts and low-Q composition Bragg lattices reduces the linewidth to 40 MHz in spite of high mirror loss (corresponding differential efficiency of ∼0.6 W/A).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Michalzik, VCSELs: Fundamentals, Technology and Applications of Vertical Cavity Surface-Emitting Lasers, Ed. by R. Michalzik (Springer, Berlin, 2013), p. 560.

  2. D. Kuksenkov, S. Feld, C. Wilmsen, et al., Appl. Phys. Lett. 66, 277 (1995).

    Article  ADS  Google Scholar 

  3. G. Reiner, E. Zeeb, B. Möller, et al., IEEE Photon. Technol. Lett. 7, 730 (1995).

    Article  ADS  Google Scholar 

  4. W. Schmid, C. Jung, B. Weigl, et al., IEEE Photon. Technol. Lett. 8, 1288 (1996).

    Article  ADS  Google Scholar 

  5. F. M. de Sopra, H. P. Zappe, M. Moser, et al., IEEE Photon. Technol. Lett. 11, 1533 (1999).

    Article  ADS  Google Scholar 

  6. A. Bacou, A. Rissons, and J.-C. Mollier, Proc. SPIE 6908, 69080F (2008).

    Article  ADS  Google Scholar 

  7. D. K. Serkland, G. M. Peake, K. M. Geib, et al., Proc. SPIE 6132, 613208 (2006).

    Article  Google Scholar 

  8. D. K. Serkland, G. A. Keeler, K. M. Geib, and G. M. Peake, Proc. SPIE 7229, 722907 (2009).

    Article  Google Scholar 

  9. S. A. Blokhin, L. Ya. Karachinsky, I. I. Novikov, A. S. Payusov, A. M. Nadtochiy, M. A. Bobrov, A. G. Kuzmenkov, N. A. Maleev, N. N. Ledentsov, V. M. Ustinov, and D. Bimberg, Semiconductors 48, 77 (2014).

    Article  ADS  Google Scholar 

  10. K. D. Choquette, K. M. Geib, C. I. H. Ashby, et al., IEEE J. Sel. Top. Quantum Electron. 3, 916 (1997).

    Article  Google Scholar 

  11. N. A. Maleev, A. G. Kuz’menkov, M. M. Kulagina, Yu.M. Zadiranov, A. P. Vasil’ev, S. A. Blokhin, A. S. Shulenkov, S. I. Troshkov, A. G. Gladyshev, A. M. Nadtochiy, M. M. Pavlov, M. A. Bobrov, D. E. Nazaruk, and V. M. Ustinov, Semiconductors 47, 993 (2013).

    Article  ADS  Google Scholar 

  12. M. A. Bobrov, N. A. Maleev, S. A. Blokhin, A. G. Kuzmenkov, A. P. Vasil’ev, A. A. Blokhin, Yu. A. Guseva, M. M. Kulagina, Yu. M. Zadiranov, S. I. Troshkov, V. Lysak, and V. M. Ustinov, Semiconductors 50, 1390 (2016).

    Article  ADS  Google Scholar 

  13. D. E. Nazaruk, S. A. Blokhin, N. A. Maleev, et al., J. Phys.: Conf. Ser. 572, 012036 (2014).

    Google Scholar 

  14. C. H. Henry, IEEE J. Quantum Electron. 18, 259 (1982).

    Article  ADS  Google Scholar 

  15. P. Dowd, H. D. Summers, I. H. White, et al., Electron. Lett. 31, 557 (1995).

    Article  ADS  Google Scholar 

  16. H. Halbritter, R. Shau, F. Riemenschneider, et al., Electron. Lett. 40, 1266 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Blokhin.

Additional information

Original Russian Text © S.A. Blokhin, M.A. Bobrov, A.G. Kuz’menkov, A.A. Blokhin, A.P. Vasil’ev, Yu.A. Guseva, M.M. Kulagina, Yu.M. Zadiranov, N.A. Maleev, I.I. Novikov, L.Ya. Karachinsky, N.N. Ledentsov, V.M. Ustinov, 2018, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 44, No. 1, pp. 67–75.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blokhin, S.A., Bobrov, M.A., Kuz’menkov, A.G. et al. The Influence of Cavity Design on the Linewidth of Near-IR Single-Mode Vertical-Cavity Surface-Emitting Lasers. Tech. Phys. Lett. 44, 28–31 (2018). https://doi.org/10.1134/S1063785018010042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785018010042

Navigation