Skip to main content
Log in

Dielectric properties of laser-ablated HfO2 particles

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Dielectric properties of hafnium dioxide (HfO2) nanoparticles obtained by pulsed laser ablation have been studied by impedance spectroscopy in a frequency range from 50 to 105 Hz. It is established that the dielectric permittivity of obtained particles depends on the degree of porosity of the ablated material, As the porosity decreases, both real (ɛ′) and imaginary (ɛ″) components of the complex dielectric permittivity tend to increase. According to analysis in the framework of the Bruggeman effective medium approximation, the static dielectric permittivity of obtained HfO2 nanoparticles amounts to ɛ′ = 24 ± 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Wong and H. Iwai, Microelectron. Eng. 83, 1867 (2006).

    Article  Google Scholar 

  2. A. Dkhissi, A. Esteve, C. Mastail, S. Olivier, G. Mazaleyrat, L. Jeloaica, and M. D. Rouhani, J. Chem. Theory Comput. 4(11), 1915 (2008).

    Article  Google Scholar 

  3. J. Wang, H. P. Li, and R. Stevens, J. Mater. Sci. 27, 5397 (1992).

    Article  ADS  Google Scholar 

  4. D. M. Hausmann, E. Kim, J. Becker, and R. G. Gordon, Chem. Mater. 14(10), 4350 (2002).

    Article  Google Scholar 

  5. T. Wang and J. G. Ekerdt, Chem. Mater. 21, 3096 (2009).

    Article  Google Scholar 

  6. M. Alam, K. Abhilash, and C. V. Ramana, Thin Solid Films 520, 6631 (2012).

    Article  ADS  Google Scholar 

  7. M. A. Pugachevskii and V. I. Panfilov, Inorg. Mater. 50(6), 582 (2014).

    Article  Google Scholar 

  8. M. A. Pugachevskii, V. G. Zavodinskii, and A. P. Kuz’menko, Tech. Phys. 56(2), 254 (2011).

    Article  Google Scholar 

  9. M. A. Pugachevskii, Tech. Phys. Lett. 38(4), 329 (2012).

    Article  ADS  Google Scholar 

  10. M. A. Pugachevskii and V. I. Panfilov, J. Appl. Spectr. 81(4), 640 (2014).

    Article  ADS  Google Scholar 

  11. M. A. Pugachevskii, J. Appl. Spectr. 79(5), 834 (2012).

    Article  ADS  Google Scholar 

  12. N. N. Kononov, S. G. Dorofeev, A. A. Ishchenko, R. A. Mironov, V. G. Plotnichenko, and E. M. Dianov, Semiconductors 45(8), 1068 (2011).

    Article  ADS  Google Scholar 

  13. D. A. G. Bruggeman, Ann. Phys. 416(7), 636 (1935).

    Article  Google Scholar 

  14. T. Bertaud, M. Sowinska, D. Walczyk, Ch. Walczyk, S. Kubotsch, Ch. Wenger, and T. Schroeder, Mater. Sci. Eng. 41, 1208 (2012).

    Google Scholar 

  15. Ch. Zhao, C. Zh. Zhao, M. Werner, S. Taylor, and P. Chalker, Nanoscale Res. Lett. 8, 456 (2013).

    Article  ADS  Google Scholar 

  16. M.-G. Blanchin, B. Canut, Y. Lambert, V. S. Teodorescu, A. Barau, and M. Zaharescu, J. Sol-Gel Sci. Technol. 47, 165 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Pugachevskii.

Additional information

Original Russian Text © M.A. Pugachevskii, V.I. Panfilov, 2015, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 41, No. 6, pp. 73–80.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pugachevskii, M.A., Panfilov, V.I. Dielectric properties of laser-ablated HfO2 particles. Tech. Phys. Lett. 41, 291–293 (2015). https://doi.org/10.1134/S1063785015030268

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785015030268

Keywords

Navigation