Skip to main content
Log in

Emission characteristics improvement in structures with InAs/GaAsN/InGaAsN superlattices

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The influence of some parameters of nitrogen-containing heterostructures InAs/GaAsN/InGaAsN with strain-compensated superlattices (SCSL) on their emission characteristics has been studied. It is established that the net strain in the structure affects the photoluminescence (PL) linewidth, internal quantum efficiency, intensity, and wavelength. The maximum PL intensity and minimum full width at half maximum (FWHM) of the PL line were achieved with small strains (0–0.2%), whereas the maximum wavelengths (∼1.76 μm) observed for large strain (about +1%). By adding multilayer InAs inserts in the active InGaAsN quantum well in combination with using strain-compensated GaAsN/InGaAsN superlattices, it is possible to control the room-temperature emission wavelength in the range of 1.45–1.76 μm without significantly deteriorating the emissiion characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. W. Chow and J. S. Harris, Jr., Appl. Phys. Lett. 82, 1673 (2003).

    Article  ADS  Google Scholar 

  2. M. Kondow, K. Uomi, A. Niwa, et al., Jpn. J. Appl. Phys. (Part 1) 35, 1273 (1996).

    Article  ADS  Google Scholar 

  3. H. Hugues, B. Damilano, J.-Y. Duboz, and J. Massies, Appl. Phys. Lett. 88, 091111 (2006).

    Google Scholar 

  4. H. Y. Liu, M. Hopkinson, and P. Navaretti, Appl. Phys. Lett. 83, 4951 (2003).

    Article  ADS  Google Scholar 

  5. I. P. Soshnikov, N. V. Kryzhanovskaya, N. N. Ledentsov, A. Yu. Egorov, V. V. Mamutin, V. A. Odnoblyudov, V. M. Ustinov, O. M. Gorbenko, H. Kirmse, W. Neumann, and D. Bimberg, Fiz. Tekh. Poluprovodn. (St. Petersburg) 38, 354 (2004) [Semiconductors 38, 340 (2004)].

    Google Scholar 

  6. A. Yu. Egorov, V. V. Mamutin, and V. M. Ustinov, RF Patent No. 2257640 (2004).

  7. V. A. Odnoblyudov, A. Yu. Egorov, A. R. Kovsh, et al., Pis’ma Zh. Tekh. Fiz. 29(10), 77 (2003) [Tech. Phys. Lett. 29, 433 (2003)].

    Google Scholar 

  8. V. M. Ustinov, A. Yu. Egorov, V. V. Mamutin, et al., Izv. Ross. Akad. Nauk, Ser. Fiz. 68, 15 (2004) [Bull. Russ. Acad. Sci., Phys. 68, 11 (2004)].

    Google Scholar 

  9. V. V. Mamutin, A. Yu. Egorov, N. V. Kryzhanovskaya, V. S. Mikhrin, A. M. Nadtochy, and A. V. Pirogov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 42, 823 (2008) [Semiconductors 42, 805 (2008)].

    Google Scholar 

  10. V. V. Mamutin, O. V. Bondarenko, A. Yu. Egorov, et al., Pis’ma Zh. Tekh. Fiz. 32(5), 89 (2006) [Tech. Phys. Lett. 32, 229 (2006)].

    Google Scholar 

  11. T. G. Anderson, Z. G. Chen, V. D. Kulakovskii, A. Uddin, and J. T. Vallin, Appl. Phys. Lett. 51, 752 (1987).

    Article  ADS  Google Scholar 

  12. A. M. Moy, A. C. Chen, K. Y. Cheng, L. J. Chou, and K. C. Hsieh, J. Cryst. Growth 175/176, 812 (1997).

    Article  Google Scholar 

  13. R. Kudrawiec, J. Appl. Phys. 101, 023 522 (2007).

    Google Scholar 

  14. V. V. Mamutin, O. V. Bondarenko, A. P. Vasil’ev, A. G. Gladyshev, A. Yu. Egorov, N. V. Kryzhanovskaya, V. S. Mikhrin, and V. M. Ustinov, Pis’ma Zh. Tekh. Fiz. 33(9), 53 (2007) [Tech. Phys. Lett. 33, 384 (2007)].

    Google Scholar 

  15. N. V. Kryzhanovskaya, A. Yu. Egorov, V. V. Mamutin, N. K. Polyakov, A. F. Tsatsulínikov, A. R. Kovsh, N. N. Ledentsov, V. M. Ustinov, and D. Bimberg, Fiz. Tekh. Poluprovodn. (St.Petersburg) 39, 735 (2005) [Semiconductors 39, 703 (2005)].

    Google Scholar 

  16. V. V. Mamutin, A. Yu. Egorov, N. V. Kryzhanovskaya, A. M. Nadtochy, and A. S. Payusov, Pis’ma Zh. Tekh. Fiz. 34(4), 24 (2008) [Tech. Phys. Lett. 34, 146 (2008)].

    Google Scholar 

  17. V. V. Mamutin, A. Yu. Egorov, N. V. Kryzhanovskaya, A. M. Nadtochy, V. S. Mikhrin, and E. V. Pirogov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 42, 823 (2008) [Semiconductors 42, 805 (2008)].

    Google Scholar 

  18. S. F. Chichibu, A. Uedono, T. Onuma, et al., Nature Mater. 5, 810 (2006).

    Article  ADS  Google Scholar 

  19. Y. Narukava, Y. Kawakami, S. Fujita, and S. Nakamura, Phys. Rev. B 59, 10 283 (1999).

    Google Scholar 

  20. T. Stoica, R. J. Meijers, R. Calarco, et al., Nano Lett. 6, 1541 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Mamutin.

Additional information

Original Russian Text © V.V. Mamutin, 2009, published in Pis’ma v Zhurnal Tekhnicheskoĭ Fiziki, 2009, Vol. 35, No. 8, pp. 81–89.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamutin, V.V. Emission characteristics improvement in structures with InAs/GaAsN/InGaAsN superlattices. Tech. Phys. Lett. 35, 384–387 (2009). https://doi.org/10.1134/S1063785009040294

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785009040294

PACS numbers

Navigation