Skip to main content
Log in

Laser-induced processes in the IR range in nanocomposites with fullerenes and carbon nanotubes

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Laser-induced processes in the IR spectral range, which are related to manifestations of the optical limiting in composite systems containing fullerenes and carbon nanotubes (CNTs), have been studied. Organic materials based on polyimides (PIs), 2-cyclooctylamine-5-nitropyridine (COANP), polyanilines, and dispersed liquid crystal (LC) structures were used as nanoparticle-sensitized matrices. Manifestations of optical limiting in the IR range at 1047, 1080, 1315, and 2940 nm are demonstrated and the position of composites studied among other systems used for optical limiting in the IR range is determined. The optical limiting at 1080 nm in CNT-containing solutions and LC cells was studied and the levels of limiting in thin-film PI-based nanocomposites with CNTs are established. A microscopic examination of thin PI films with CNTs revealed the structure of quasi-photonic crystals formed in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wang, N. Herron, and J. Casper, Mater. Sci. Eng. B 19, 61 (1993).

    Article  Google Scholar 

  2. Song Yinglin, Bao Xinxian, Li Feng, et al., Proc. SPIE 2854, 230 (1996).

    ADS  Google Scholar 

  3. A. V. Eletskii and B. M. Smirnov, Usp. Fiz. Nauk 165, 977 (1995) [Phys. Usp. 38, 935 (1995)].

    Article  Google Scholar 

  4. N. Kamanina, A. Barrientos, A. Leyderman, et al., Mol. Mater. 13, 275 (2000).

    Google Scholar 

  5. L. Virien, E. Anglaret, D. Riehl, et al., Chem. Phys. Lett. 307, 317 (1999).

    Article  ADS  Google Scholar 

  6. L. Vivien, D. Riehl, F. Hache, and E. Anglaret, J. Nonlinear Opt. Phys. Mater. 9, 297 (2000).

    Article  ADS  Google Scholar 

  7. K. Dou, J. Y. Du, and E. T. Knobbe, J. Lumin. 83–84, 241 (1999).

    Article  Google Scholar 

  8. N. V. Kamanina and A. I. Plekhanov, Opt. Spektrosk. 93, 443 (2002) [Opt. Spectrosc. 93, 408 (2002)].

    Google Scholar 

  9. N. V. Kamanina and E. F. Sheka, Opt. Spektrosk. 96, 659 (2004) [Opt. Spectrosc. 96, 599 (2004)].

    Google Scholar 

  10. M. Ouyang, K. Z. Wang, H. X. Zhang, et al., Appl. Phys. Lett. 68, 2441 (1996).

    Article  ADS  Google Scholar 

  11. A. Kost, L. Tutt, M. B. Klein, et al., Opt. Lett. 18, 334 (1993).

    Article  ADS  Google Scholar 

  12. N. V. Kamanina, I. V. Bagrov, I. M. Belousova, et al., Opt. Commun. 194, 367 (2001).

    Article  ADS  Google Scholar 

  13. N. V. Kamanina, Opt. Spektrosk. 90, 959 (2001) [Opt. Spectrosc. 90, 931 (2001)].

    Google Scholar 

  14. N. V. Kamanina. Synth. Met. 139, 547 (2003).

    Article  Google Scholar 

  15. N. V. Kamanina, M. M. Mikhailova, A. I. Denisyuk, and I. Yu. Sapurina, Mol. Cryst. Liq. Cryst. 426, 129 (2005).

    Article  Google Scholar 

  16. N. V. Kamanina, Usp. Fiz. Nauk 175, 445 (2005) [Phys. Usp. 48, 419 (2005)].

    Google Scholar 

  17. A. Zakhidov Anvar, I. Khayrullin Ilyas, H. Baughman Ray, et al., Nanostruct. Mater. 12, 1089 (1999).

    Article  Google Scholar 

  18. V. P. Belousov, I. M. Belousova, V. P. Budtov, et al., Opt. Zh. 64, 3 (1997).

    Google Scholar 

  19. N. V. Kamanina, Opt. Commun. 162, 228 (1999).

    Article  ADS  Google Scholar 

  20. I. V. Bagrov, A. P. Zhevlakov, O. P. Mikheeva, et al., Pis’ma Zh. Tekh. Fiz. 28(13), 40 (2002) [Tech. Phys. Lett. 28, 552 (2002)].

    Google Scholar 

  21. N. V. Kamanina, M. O. Iskandarov, and A. A. Nikitichev, Opt. Commun. 225, 337 (2003).

    Article  ADS  Google Scholar 

  22. G. Ruani, M. Biscarini, M. Cavallini, et al., in Proceedings of the 2nd International Symposium on Optical Power Limiting, Venice, 2000, p. 69.

  23. D. Riehl and F. Fougeanet, Nonlinear Opt. 21, 391 (1999).

    Google Scholar 

  24. L. Vivien, D. Riehl, P. Lancon, et al., Nonlinear. Opt. 27, 395 (2001).

    Google Scholar 

  25. R. A. Ganeev, N. V. Kamanina, I. A. Kulagin, Quantum Electron. 32, 781 (2002).

    Article  Google Scholar 

  26. N. V. Kamanina, M. O. Iskandarov, and A. A. Nikitichev, Pis’ma Zh. Tekh. Fiz. 29(16), 29 (2003) [Tech. Phys. Lett. 28, 672 (2003)].

    Google Scholar 

  27. N. V. Kamanina and I. Yu. Denisyuk, Opt. Spektrosk. 96, 86 (2004) [Opt. Spectrosc. 96, 77 (2004)].

    Article  ADS  Google Scholar 

  28. N. V. Kamanina, S. E. Putilin, and D. I. Staselko, Synth. Met. 127, 129 (2002).

    Article  Google Scholar 

  29. S. R. Mishra, H. S. Rawat, and S. C. Mehendale, Appl. Phys. Lett. 71, 46 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.A. Shulev, A.K. Filippov, N.V. Kamanina, 2006, published in Pis’ma v Zhurnal Tekhnicheskoĭ Fiziki, 2006, Vol. 32, No. 16, pp. 10–17.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shulev, V.A., Filippov, A.K. & Kamanina, N.V. Laser-induced processes in the IR range in nanocomposites with fullerenes and carbon nanotubes. Tech. Phys. Lett. 32, 694–697 (2006). https://doi.org/10.1134/S1063785006080177

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785006080177

PACS numbers

Navigation