Skip to main content
Log in

The Thermal Image Receiver Realized in the Image Intensifier Tube Architecture

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

An innovative design of thermal imaging is considered. The results of analysis and calculations of the characteristics of a thermal image receiver (3–15 μm), made in the electron-optical converter architecture, are presented. The spatial dependences of the spontaneous polarization the electric field strengths and the electric potentials on the surface of pyroelectric film are calculated. The characteristics of thermal-field-induced polarization of various pyroelectric films are obtained. The temperature dependences of various pyroelectric films polarizations are calculated by the COMSOL Multiphysics software package based on the finite element method. The possible influences of the piezoelectric effect to the images of the distribution of electric potentials of pyroelectric films are taken into account. The estimates of the values of the main characteristics of the image intensifier tube architecture are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

REFERENCES

  1. C. Jelen, S. B. Slivken, T. David, G. Brown, M. Razeghi. In: Photodetectors: Materials and Devices III, ed. by G.J. Brown (San Jose, Proc. SPIE, 1998), v. 3287, p. 96–104. https://doi.org/10.1117/12.304470

    Book  Google Scholar 

  2. O. O. Cellek, S. Ozer, C. Besikci. IEEE J. Quant. Electron., 41 (7), 980 (2005). https://doi.org/10.1109/JQE.2005.848947

    Article  ADS  CAS  Google Scholar 

  3. S. U. Eker, Y. Arslan, C. Besikci. Infrared Phys. Technol., 54 (2), 209 (2011). https://doi.org/10.1016/j.infrared.2010.12.015

    Article  ADS  CAS  Google Scholar 

  4. L. T. Chee, M. Hooman. Nanophotonics, 7 (1), 1 (2017). https://doi.org/10.1515/nanoph-2017-0061

    Article  Google Scholar 

  5. V. V. Korotaev, G. S. Mel’nikov, S. V. Mikheev, V. M. Samkov, Yu. I. Soldatov. Osnovy teplovideniya (St. Petersburg: NIU ITMO, St. Petersburg, 2012), p. 122 (in Russian).

  6. J. E. Huffman, A. G. Crouse, B. L. Halleck, T. V. Downes. J. Appl. Phys., 72 (1), 273 (1998). https://doi.org/10.1063/1.352127

    Article  ADS  Google Scholar 

  7. N. Sclar. In: Infrared Detectors, ed. by W.L. Wolfe (San-Diego, Proc. SPIE, 1983), v. 0443, p. 11–41. https://doi.org/10.1117/12.937937

    Book  Google Scholar 

  8. S. M. Birkmann, J. Stegmaier, U. Grozinger, O. Krause. In: High Energy, Optical, and Infrared Detectors for Astronomy III, ed. by D. A. Dorn, A. D. Holland (Marceille, Proc, SPIE, 2008), v. 7021, p. 70210R. https://doi.org/10.1117/12.789103

  9. S. I. Woods, J. E. Proctor, T. M. Jung, A. C. Carter, J. Neira, D. R. Defibaugh. Appl. Opt., 57 (18), D82 (2018). https://doi.org/10.1364/AO.57.000D82

    Article  CAS  PubMed  Google Scholar 

  10. A. Rogalski. Infrared Phys. Technol., 43 (3–5), 187 (2002). https://doi.org/10.1016/S1350-4495(02)00140-8

    Article  ADS  Google Scholar 

  11. G. Eppeldauer, M. Rácz. Appl. Opt., 39 (31), 5739 (2000). https://doi.org/10.1364/AO.39.005739

    Article  ADS  CAS  PubMed  Google Scholar 

  12. H. Yuan, G. Apgar, J. Kim, J. Laquindanum, V. Nalavade. Infrared Technology and Applications XXXIV, ed. by B. F. Andersen, G. F. Fulop, P. R. Norton (Orlando, Proc. SPIE, 2008), v. 6940, p. 69403C. https://doi.org/10.1117/12.782735

    Book  Google Scholar 

  13. A. Rogalski. Infrared Phys. Technol., 54 (5), 126 (2011). https://doi.org/10.1016/j.infrared.2010.12.003

    Article  ADS  Google Scholar 

  14. I. E. Carranza, J. Grant, J. Gough, R.S. David. IEEE Trans. Terahertz Sci. Technol., 5 (6), 892 (2015). https://doi.org/10.1109/TTHZ.2015.2463673

    Article  ADS  CAS  Google Scholar 

  15. Y.-Z. Deng, S.-F. Tang, H.-Y. Zeng, Z.-Y. Wu, D.‑K. Tung. Sensors (Basel), 18 (2593), 1 (2018). https://doi.org/10.3390/s18082593

    Article  CAS  Google Scholar 

  16. M. F. Rashman, I. A. Steele, S. D. Bates, D. Copley, S. N. Long-more. Monthly Notices Royal Astronom. Society, 492 (1), 480 (2020). https://doi.org/10.1093/mnras/stz3497

    Article  ADS  CAS  Google Scholar 

  17. C. Vedel, J.-L. Martin, J.-L. Ouvrier Buffet. In: Infrared Technology and Applications XXV, ed. by B. F. Andersen, M. Strojnik (Orlando, Proc. SPIE, 1999), v. 3698, p. 276–283. https://doi.org/10.1117/12.354529

    Book  Google Scholar 

  18. T. Schimert, D. Ratcliff, J. Brady, S. Ropson, R. Gooch, B. Ritchey, P. McCardel, K. Rachels, M. Wand, M. Weinstein, J. Wyim. In: Unattended Ground Sensor Technologies and Applications, ed. by E. M. Carapezza, D. B. Law, K. T. Stalker (Orlando, Proc. SPIE, 1999), v. 3713, p. 101–111. https://doi.org/10.1117/12.357125

    Book  Google Scholar 

  19. S. Estill, M. R. Brozel. MRS Online Proceed. Library, 299, 27 (1994). https://doi.org/10.1557/PROC-299-27

    Article  CAS  Google Scholar 

  20. C. Hoffman, R. Driggers. Encyclopedia of Optical and Photonic Engineering (Print)Five Volume Set (CRC Press, Florida, 2015), p. 4088. ISBN: 9781439850978.

    Google Scholar 

  21. F.J. Low. J. Optical Society America, 51 (11), 1300 (1961). https://doi.org/10.1364/JOSA.51.001300

    Article  ADS  CAS  Google Scholar 

  22. M. A. Tarasov, L. S. Kuzmin, V. S. Edelman, N. S. Kaurova, M. Yu. Fominskii, A. B. Ermakov. JETP Lett., 92, 416 (2010). https://doi.org/10.1134/S0021364010180116

    Article  ADS  CAS  Google Scholar 

  23. A. Rogalski. Infrared Detectors: 2nd ed. (CRC Press, Florida, 2020), p. 898. ISBN: 9780367577094.

    Google Scholar 

  24. S. K. Holland, R. H. Krauss, G. Laufer. Optical Engineer., 43 (10), 2303 (2004). https://doi.org/10.1117/1.1782612

    Article  ADS  CAS  Google Scholar 

  25. C. B. Roundy, R. L. Byer. J. Appl. Phys., 44 (2), 929 (1973). https://doi.org/10.1063/1.1662294

    Article  ADS  CAS  Google Scholar 

  26. M. C. Kao, H. Z. Chen, S. L. Yang, Y. C. Chen, P. T. Hsieh, C. C. Yu. Thin. Solid Films, 516 (16), 5518 (2008). https://doi.org/10.1016/j.tsf.2007.07.020

    Article  ADS  CAS  Google Scholar 

  27. C. Giebeler, J. Wright, S. Freeborn, N. Conway, T. Chamberlain, P. Clark, M. Schreiter, D. Pitzer, R. Koehle. SENSOR + TEST Conference 2009 (Nurnberg, AMA Service GmbH, 2009), p. 185–189. https://doi.org/10.5162/irs09/i1.1

  28. C. M. Dudhe, S. B. Nagdeote, C. P. Chaudhari. Taylor & Francis, Ferroelectrics, 482, 104 (2015). https://doi.org/10.1080/00150193.2015.1057080

    Article  ADS  CAS  Google Scholar 

  29. W. R. Cook, jr. Piezoelectric, Pyroelectric, and Related Constants (Springer-Verlag, Berlin, Heidelberg, Berlin, 1994), p. 543. ISBN: 978-3-540-55065-5.

    Google Scholar 

  30. S. T. Liu, R. B. Maciolek. J. Electron. Mater., 4 (1), 91 (1975). https://doi.org/10.1007/BF02657838

    Article  ADS  CAS  Google Scholar 

  31. H. V. Alexandra, C. Berbecaru, F. Stanculescu, L. Pintilie, I. Matei, M. Lisca. Sensors Actuators A: Phys., 113 (3), 387 (2004). https://doi.org/10.1016/j.sna.2004.03.046

    Article  CAS  Google Scholar 

  32. W. A. Tiller. The Science of Crystallization Macroscopic Phenomena and Defect Generation (Cambridge University Press, California, 1992), p. 520. ISBN: 9780521388283.

    Book  Google Scholar 

  33. S. Yarlagadda, H. W. Chan, H. Lee. J. Intelligent Mater. Systems Structures, 6 (6), 757 (1995). https://doi.org/10.1177/1045389X9500600603

    Article  CAS  Google Scholar 

  34. J. Ouyang. Enhanced Piezoelectric Performance of Printed PZT Films on Low Temperature Substrates (Rochester, Rochester Institute of Technology, 2017).

    Google Scholar 

  35. T. A. Germer, J. C. Zwinkels, B. K. Tsai. Spectrophotometry: Accurate Measurement of Optical Properties of Materials (Amsterdam, Academic Press, 2014), v. 46, p. 533. ISBN: 9780123860224.

    Google Scholar 

  36. W. R. Cook, jr. Piezoelectric, Pyroelectric, and Related Constants (Springer-Verlag, Berlin, Heidelberg, Berlin, 1994), p. 543. ISBN: 978-3-540-55065-5.

    Google Scholar 

  37. L. Zhang, R. Barrett, P. Cloetens, C. Detlefs, M. Sanchez del Rio. J. Synchrotron Rad., 21, 507 (2014). https://doi.org/10.1107/S1600577514004962

    Article  CAS  Google Scholar 

  38. Y. Wu, G. Caoa. J. Mater. Res., 15 (7), 1583 (2000). https://doi.org/10.1557/JMR.2000.0227

    Article  ADS  CAS  Google Scholar 

  39. M. Vollmer, K.-P. Mollmann. Infrared Thermal Imaging Fundamentals, Research and Applications (Wiley-VCH, 2018), p. 794. ISBN: 978-3-527-41351-5.

    Google Scholar 

Download references

Funding

This research was supported financially by the Russian Foundation for Basic Research as part of research project no. 20-38-90125.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Grevcev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

APPENDIX 1

The field intensity of the upper plane is

$${{E}_{{{\text{upper}}\,\,{\text{plane}}}}} = - \frac{{{{P}_{S}}z}}{{4\pi {{\varepsilon }_{0}}}}\int\limits_0^R {\int\limits_0^{2\pi } {\frac{r}{{{{{({{z}^{2}} + {{r}^{2}})}}^{{3/2}}}}}drd\varphi } } .$$
(A1.1)

Therefore,

$${{E}_{{{\text{upper}}\,\,{\text{plane}}}}} = - \frac{{{{P}_{S}}z}}{{2{{\varepsilon }_{0}}}}\int\limits_0^R {\frac{r}{{{{{({{z}^{2}} + {{r}^{2}})}}^{{3/2}}}}}dr} $$
(A1.2)

and, performing a substitution of variables, we obtain

$${{E}_{{{\text{upper}}\,\,{\text{plane}}}}} = - \frac{{{{P}_{S}}z}}{{4{{\varepsilon }_{0}}}}\int\limits_0^R {\frac{{d({{r}^{2}} + {{z}^{2}})}}{{{{{({{r}^{2}} + {{z}^{2}})}}^{{3/2}}}}}} .$$
(A1.3)

Thus, we derive the functional dependence of electric-field intensity E of the upper negatively charged plane of the dipole layer from expression (5):

$$\begin{gathered} {{E}_{{{\text{upper}}\,\,{\text{plane}}}}} = \left. {\left( {\frac{{{{P}_{S}}}}{{2{{\varepsilon }_{0}}}}\frac{z}{{\sqrt {{{z}^{2}} + {{r}^{2}}} }}} \right)} \right|_{0}^{R} \\ = - \frac{{{{P}_{S}}}}{{2{{\varepsilon }_{0}}}}\left( {1 - \frac{z}{{\sqrt {{{z}^{2}} + {{R}^{2}}} }}} \right). \\ \end{gathered} $$
(A1.4)

APPENDIX 2

The integral of a superposition of electric-field intensities of both planes is

$$\varphi (z) = - \int\limits_\infty ^z {\frac{{{{P}_{S}}}}{{2{{\varepsilon }_{0}}}}\left( {\frac{z}{{\sqrt {{{z}^{2}} + {{R}^{2}}} }} + \frac{{z + d}}{{\sqrt {{{{(z + d)}}^{2}} + {{R}^{2}}} }}} \right)dz.} $$
(A2.1)

Its antiderivative is

$$\varphi (z) = \frac{{{{P}_{S}}}}{{2{{\varepsilon }_{0}}}}(\sqrt {{{{(z + d)}}^{2}} + {{R}^{2}}} - \sqrt {{{z}^{2}} + {{R}^{2}}} ){\text{|}}_{\infty }^{z}.$$
(A2.2)

Let us consider the lower limit of function (A2.2):

$$\mathop {\lim }\limits_{z \to \infty } \frac{{{{P}_{S}}}}{{2{{\varepsilon }_{0}}}}(\sqrt {{{{(z + d)}}^{2}} + {{R}^{2}}} - \sqrt {{{z}^{2}} + {{R}^{2}}} ).$$
(A2.3)

Transforming (A2.3) and expanding the obtained expression into a Taylor series (utilizing the smallness of  \(\frac{{2zd + {{d}^{2}}}}{{{{z}^{2}} + {{R}^{2}}}}\) at z → ∞), we find

$$\mathop {\lim }\limits_{z \to \infty } \frac{{{{P}_{S}}}}{{2{{\varepsilon }_{0}}}}\sqrt {{{z}^{2}} + {{R}^{2}}} \left( {1 + \frac{{2zd + {{d}^{2}}}}{{2({{z}^{2}} + {{R}^{2}})}} - 1} \right) = \frac{{{{P}_{S}}}}{{2{{\varepsilon }_{0}}}}d.$$
(A2.4)

Inserting (A2.4) into expression (A2.2), we obtain a functional dependence for the electric potential of arbitrary point z:

$$\varphi (z) = \frac{{{{P}_{S}}}}{{2{{\varepsilon }_{0}}}}(\sqrt {{{{(z + d)}}^{2}} + {{R}^{2}}} - \sqrt {{{z}^{2}} + {{R}^{2}}} - d).$$
(A2.5)

APPENDIX 3

Let us present expression (5) from the main text in the form

$$E = \frac{{{{P}_{S}}}}{{2{{\varepsilon }_{0}}}}\frac{2}{{\sqrt {{{z}^{2}} + {{R}^{2}}} }}\left( {z - \frac{{z + d}}{{\sqrt {1 + \frac{{2zd + {{d}^{2}}}}{{{{z}^{2}} + {{R}^{2}}}}} }}} \right).$$
(A3.1)

Expanding (A3.1) into a Taylor series, we obtain the following after several transformations at R \( \gg \) z:

$$\begin{gathered} E = \frac{{{{P}_{S}}}}{{2{{\varepsilon }_{0}}}}\frac{1}{R}\left( {z - \frac{{2(z + d){{R}^{2}}}}{{2{{R}^{2}} + 2zd + {{d}^{2}}}}} \right) \\ = - \frac{{{{P}_{S}}}}{{2{{\varepsilon }_{0}}}}\frac{{2(z + d)R}}{{2{{R}^{2}} + 2zd + {{d}^{2}}}} = - \frac{{{{P}_{S}}}}{{2{{\varepsilon }_{0}}}}\frac{{(z + d)}}{R}. \\ \end{gathered} $$
(A3.2)

If dipole arm d \( \gg \) z, it follows from expression (A3.2)

$$E = - \frac{{{{P}_{S}}}}{{2{{\varepsilon }_{0}}}}\frac{d}{R}.$$
(A3.3)

Proceeding in a similar way, we derive an approximation for the electric potential from Eq. (A2.5) at R \( \gg \) z:

$$\begin{gathered} \varphi (z) = \frac{{{{P}_{S}}}}{{2{{\varepsilon }_{0}}}}\sqrt {{{z}^{2}} + {{R}^{2}}} \\ \times \,\,\left( {\sqrt {1 + \frac{{2zd + {{d}^{2}}}}{{{{z}^{2}} + {{R}^{2}}}}} - 1 - \frac{d}{{\sqrt {{{z}^{2}} + {{R}^{2}}} }}} \right). \\ \end{gathered} $$
(A3.4)

Using the Taylor series expansion, we find from (A3.4) that

$$\begin{gathered} \varphi (z) = \frac{{{{P}_{S}}}}{{2{{\varepsilon }_{0}}}}\sqrt {{{z}^{2}} + {{R}^{2}}} \\ \times \,\,\left( {1 + \frac{{2{{z}_{0}}d + {{d}^{2}}}}{{2({{z}^{2}} + {{R}^{2}})}} - 1 - \frac{d}{{\sqrt {{{z}^{2}} + {{R}^{2}}} }}} \right). \\ \end{gathered} $$
(A3.5)

Since R \( \gg \) z, expression (A3.5) may be transformed into

$$\varphi (z) = \frac{{{{P}_{S}}}}{{2{{\varepsilon }_{0}}}}R\left( {\frac{{2zd + {{d}^{2}}}}{{2{{R}^{2}}}} - \frac{d}{R}} \right).$$
(A3.6)

In the 2zd \( \gg \) d2 case, expression (A3.6) is transformed into (A3.7):

$$\varphi ({{z}_{0}}) = \frac{{{{P}_{S}}}}{{2{{\varepsilon }_{0}}}}\left( {\frac{{zd}}{R} - d} \right).$$
(A3.7)

APPENDIX 4

In order to determine the functional dependence for the electric potential at z \( \gg \) R, we integrate expression (13) from the main text:

$$\Delta {{\varphi }_{{{\text{upper}}\,\,{\text{plane}}}}} = - \int\limits_\infty ^z { - \frac{{{{P}_{S}}{{R}^{2}}}}{{2{{\varepsilon }_{0}}}}\frac{d}{{{{z}^{3}}}}dz = - \left. {\frac{{{{P}_{S}}{{R}^{2}}d}}{{4{{\varepsilon }_{0}}{{z}^{2}}}}} \right|} _{\infty }^{z}.$$
(A4.1)

Thus, the potential of the dipole layer at arbitrary point z at z \( \gg \) R is

$$\varphi (z) = - \frac{{{{P}_{S}}{{R}^{2}}}}{{4{{\varepsilon }_{0}}}}\frac{d}{{{{z}^{2}}}}.$$
(A4.2)

APPENDIX 5

Let us use the expression for the mechanical stress tensor to estimate the probable distortion of the distribution of electric potentials induced by the piezoeffect:

$${{S}_{{ij}}} = \sum\limits_{kl}^{} {{{C}_{{ijkl}}}{{\varepsilon }_{{kl}}}} - \sum\limits_{mn}^{} {{{e}_{{ijmn}}}{{E}_{{mn}}}.} $$
(A5.1)

Here, Sij is the mechanical stress tensor, Cijkl is the tensor of elastic constants, εkl is the deformation tensor (εkl = αklΔT), eijmn is the tensor of piezoelectric coefficients, and Emn is the electric-field intensity tensor; αj is the matrix of thermal expansion coefficients and ΔT is the change in temperature of the studied material.

We use the Cauchy−Green form of the deformation tensor:

$${{\varepsilon }_{{kl}}} = \frac{1}{2}\left( {\frac{{\partial {{u}_{k}}}}{{\partial {{x}_{l}}}} + \frac{{\partial {{u}_{l}}}}{{\partial {{x}_{k}}}}} \right),$$
(A5.2)

where u is the vector characterizing displacements.

A simultaneous solution of Eqs. (A5.1), (A5.2) with the use of the finite element method allows one to calculate deformations εkl as functions of temperature T(t). The obtained deformation values at different temperatures εkl(T(t)) are used to calculate the electric flux density:

$${{D}_{{ij}}} = \sum\limits_{kl}^{} {{{e}_{{ijkl}}}{{\varepsilon }_{{kl}}}} + \sum\limits_{mn}^{} {{{\varepsilon }_{{ijmn}}}{{E}_{{mn}}},} $$
(A5.3)

where εijmn is the permittivity tensor of the piezoelectric material. Assuming that the external field is zero (Eexteranl = 0), the following relation is obtained for electric flux density (A5.3):

$${\mathbf{D}} = {{{\mathbf{P}}}_{{{\text{piezo}}}}}.$$
(A5.4)

Inserting the values of piezoelectric polarization Ppiezo into Eq. (19) from the main text, which characterizes the overall pattern of the potential distribution regardless of the cause of polarization, we determine the surface potential induced by elastic deformations.

In doing this, we use

tensor of piezoelectric coefficients eijkl for PZT

$${{e}_{{ijkl}}} = \left( {\begin{array}{*{20}{c}} 0&0&0&{17.034}&0&0 \\ 0&0&0&0&0&0 \\ { - 6.62281}&{ - 6.62281}&{23.24}&0&0&0 \end{array}} \right)\,\left[ {\frac{{\text{C}}}{{{{{\text{m}}}^{2}}}}} \right],$$
(A5.5)

tensor of elastic constants Cijkl for PZT

$${{C}_{{ijkl}}} = \left( {\begin{array}{*{20}{c}} {127.2}&{80.21}&{84.67}&0&0&0 \\ {80.21}&{127.2}&{84.67}&0&0&0 \\ {84.67}&{84.67}&{117.43}&0&0&0 \\ 0&0&0&{22.98}&0&0 \\ 0&0&0&0&{22.98}&0 \\ 0&0&0&0&0&{23.47} \end{array}} \right)\,\,[{\text{GPa}}]$$
(A5.6)

and tensor of elastic constants Cijkl for Si

$${{C}_{{ijkl}}} = \left( {\begin{array}{*{20}{c}} {166}&{64}&{64}&0&0&0 \\ {64}&{166}&{64}&0&0&0 \\ {64}&{64}&{166}&0&0&0 \\ 0&0&0&{80}&0&0 \\ 0&0&0&0&{80}&0 \\ 0&0&0&0&0&{80} \end{array}} \right)\,\,[{\text{GPa}}].$$
(A5.7)

APPENDIX 6

Let us use literature data on resistivities of the examined films (Table A6.1).

Table A6.1. Resistivities of pyroelectric films used in calculations for the double-layer Si membrane/pyroelectric structure

Since Johnson noise is the dominant type of noise in thermal imaging [39], we use the following expression to estimate the thermal noise level:

$${{V}_{N}} = \sqrt {4kTR\Delta f} ,$$
(A6.1)

where k is the Boltzmann constant, T is the temperature of the sensing and conversion sample, R is the resistance of the sensing and conversion sample, and Δf is the equivalent frequency passband.

Having calculated the thermal noise level, we obtain the following for the ultimate sensitivity of pyroelectric image receivers:

$$\mathcal{R} = \frac{{\Delta \phi }}{P}.$$
(A6.2)

The results of calculation of the key parameters of sensing and conversion materials, which were determined in this study for specific types of pyroelectric films, are presented in Table 4 in the main text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grevcev, A.S., Zolotukhin, P.A., Il’ichev, E.A. et al. The Thermal Image Receiver Realized in the Image Intensifier Tube Architecture. Tech. Phys. 68 (Suppl 3), S437–S448 (2023). https://doi.org/10.1134/S1063784223900632

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223900632

Keywords:

Navigation