Skip to main content
Log in

Magnetic-Pulse Deformation of TiNi Alloy: Experiment and Calculation

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Magnetic-pulse loading methods have been known since the 1980s and, as a rule, are used to determine the laws of destruction of materials under the action of pressure pulses with a duration of several microseconds. A modified scheme of a magnetic-pulse setup for high strain rate uniaxial tension is used in this work. The application of the scheme with the possibility of experimental measurement of the strain accumulation time and strain rate is shown on samples of TiNi alloy. The paper presents the results of finite element modeling and analytical description. Both approaches have demonstrated good agreement between the calculated residual strain and experimental results, even on samples of TiNi alloy with a specific stress-strain diagram. The analytical solution showed good qualitative agreement in assessing the strain accumulation time. On the basis of the analytical solution, an assessment of the capabilities of the magnetic-pulse loading method for uniaxial high strain rate tension is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. D. I. Alekseev, S. I. Krivosheev, S. G. Magazinov. MATEC Web Conf, 145, 05006, (2018). https://doi.org/10.1051/matecconf/201814505006

  2. H. Ma, W. Mao, H.l. Su, H. Zhu, X. Cui, L. Huang, J. Li, M. Wu. Int. J. Mech. Sci., 209, 106712 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106712

  3. Gruzdkov, S. Krivosheev, Yu. Petrov, A. Razov, A. Utkin. Mater. Sci. Eng. A, 481-482, 105 (2008). https://doi.org/10.1016/j.msea.2007.03.113

    Article  CAS  Google Scholar 

  4. K. R. Chandar, W. G. Knauss. Int. J. Fract., 20, 209 (1982). https://doi.org/10.1007/BF01140336

    Article  Google Scholar 

  5. S. G. Magazinov, S. I. Krivosheev, Yu. E. Adamyan, D. I. Alekseev, V. V. Titkov, L. V. Chernenkaya. Mater. Phys. Mech., 40, 117 (2018). https://doi.org/10.18720/MPM.4012018_14

    Article  CAS  Google Scholar 

  6. S. Atroshenko, V. Morozov, D. Gribanov, A. Lukin, Y. Petrov. EPJ Web Conf., 94, 02014 (2015). https://doi.org/10.1051/epjconf/20159402014

  7. G. I. Kanel, S. V. Razorenov, V. E. Fortov. Joint 20th AIRAPT – 43th EHPRG (Karlsruhe, Germany, 2005), 119921.

  8. G. I. Kanel, S. V. Razorenov, G. V. Garkushin, A. S. Savinykh. J. Phys. Conf. Ser., 946, 012039 (2018). https://doi.org/10.1088/1742-6596/946/1/012039

  9. Y. Meshcheryakov, A. Divakov, N. Zhigacheva, G. Konovalov. Proc. Struct. Int., 2, 477 (2016). https://doi.org/10.1016/j.prostr.2016.06.062

  10. G. G. Savenkov, Yu. I. Meshcheryakov, B. K. Barakhtin, N. V Lebedeva. J. Appl. Mech. Tech. Phys., 55, 896 (2014). https://doi.org/10.1134/S0021894414050198

    Article  ADS  CAS  Google Scholar 

  11. E. S. Ostropiko, S. I. Krivosheev, S. G. Magazinov. Appl. Phys. A, 127, 27 (2021). https://doi.org/10.1007/s00339-020-04160-7

    Article  ADS  CAS  Google Scholar 

  12. K. Otsuka, X. Ren. Progr. Mater. Sci., 50, 511 (2005). https://doi.org/10.1016/j.pmatsci.2004.10.001

    Article  CAS  Google Scholar 

  13. V. Grigorieva, A. Danilov, A. Razov. Acta Phys. Pol., 128, 592 (2015). https://doi.org/10.12693/APhysPolA.128.592

    Article  ADS  CAS  Google Scholar 

  14. S.-Y. Jiang, Y.-Q. Zhang. Trans. Nonferrous Met. Soc. China., 22 (1), 90 (2012). https://doi.org/10.1016/S1003-6326(11)61145-X

    Article  CAS  Google Scholar 

  15. S.-Y Jiang, Y.-Q. Zhang, Y.-N. Zhao, M. Tang, W.‑L. Yi. J. Cent. South Univ., 20, 24 (2013). https://doi.org/10.1007/s11771-013-1454-6

    Article  CAS  Google Scholar 

  16. M. Bragov, L. A. Igumnov, A. Yu. Konstantinov, A. K. Lomunov, A. I. Razov. Adv. Struct. Mater., 103, 133 (2019). https://doi.org/10.1007/978-3-030-11665-1

    Article  Google Scholar 

  17. Y. Qiu, M. L. Young, X. Nie. Metall. Mater. Trans. A, 46, 4661 (2015). https://doi.org/10.1007/s11661-015-3063-5

    Article  CAS  Google Scholar 

  18. Y. Qiu, M. L. Young, X. Nie. Metall. Mater. Trans. A, 48, 601 (2017). https://doi.org/10.1007/s11661-016-3857-0

    Article  CAS  Google Scholar 

  19. W. W. Chen, Q. Wu, J. H. Kang, N. A. Winfree. Int. J. Solids Struct., 38 (50-51), 8989 (2001). https://doi.org/10.1016/S0020-7683(01)00165-2

  20. S. Nemat-Nasser, W.-G. Guo. Mech. Mater., 38, 463 (2006). https://doi.org/10.1016/j.mechmat.2005.07.004

    Article  Google Scholar 

  21. H. Tobushi, Y. Shimeno, T. Hachisuka, K. Tanaka. Mech. Mater., 30 (2), 141 (1998). https://doi.org/10.1016/S0167-6636(98)00041-6

  22. J. Zurbitu, R. Santamarta, C. Picornell, W. M. Gan, H.-G. Brokmeier, J. Aurrekoetxea. Mat. Sc. Eng. A., 528 (2), 764 (2010). https://doi.org/10.1016/j.msea.2010.09.094

    Article  CAS  Google Scholar 

  23. V. A Likhachev, Yu. I. Patrikeev, in Tezisy dokladov XXIV vsesoyuznogo seminara Aktualnye problemy prochnosti”posvyashchennogo mekhanike prochnosti materialov s novymi funktsionalnymi svoistvami (Rubezhnoe, SSSR, 1990), p. 128 (in Russian).

  24. S. P. Belyaev, N. F. Morozov, A. I. Razov, A. E. Volkov, L. L. Wang, S. Q. Shi, S. Gan, J. Chen, X. L. Dong. Mater Sci Forum., 394-395, 337 (2002). https://doi.org/10.4028/www.scientific.net/MSF.394-395.337

    Article  CAS  Google Scholar 

  25. E. S. Ostropiko, A. Y. Konstantinov. Lett. Mater., 11 (2), 223 (2021). https://doi.org/10.22226/2410-3535-2021-2-223-228

    Article  Google Scholar 

  26. E. S. Ostropiko, A. Y. Konstantinov. Mater. Sci. Technol., 37 (4), 1 (2021). https://doi.org/10.1080/02670836.2021.1958466

    Article  CAS  Google Scholar 

  27. H. Kolsky. Proc. Phys. Soc. London Sect. B., 62 (11), 676 (2002). https://doi.org/10.1088/0370-1301/62/11/302

    Article  ADS  Google Scholar 

  28. T. Nicholas. Exp. Mech., 21 (5), 177 (1981). https://doi.org/10.1007/BF02326644

    Article  Google Scholar 

  29. H. Knoepfel, Pulsed High Magnetic Fields: Physical Effects and Generation Methods Concerning Pulsed Fields Up to the Megaoersted Level (North-Holland, 1970).

    Google Scholar 

  30. E. S. Ostropiko, S. I. Krivosheev, S. G. Magazinov. Lett. Mater., 11 (1), 55 (2021). https://doi.org/10.22226/2410-3535-2021-1-55-60

    Article  Google Scholar 

  31. M. Bragov, A. N. Danilov, A. Yu. Konstantinov, A. K. Lomunov, A. S. Motorin, A. I. Razov. Phys. Met. Metallogr., 116 (4), 385 (2015). https://doi.org/10.1134/S0031918X15040031

    Article  ADS  CAS  Google Scholar 

  32. S. I. Krivosheev. Digest Technical Papers – IEEE International Pulsed Power Conf., 2, 750 (1999). https://doi.org/10.1109/PPC.1999.823622

Download references

ACKNOWLEDGMENTS

Finite-element modeling in ANSYS was performed using the computational resources of the supercomputing center of Peter the Great St. Petersburg Polytechnic University.

Funding

This study was supported financially by the Russian Foundation for Basic Research (project no. 19-32-60035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. S. Ostropiko, S. G. Magazinov or S. I. Krivosheev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostropiko, E.S., Magazinov, S.G. & Krivosheev, S.I. Magnetic-Pulse Deformation of TiNi Alloy: Experiment and Calculation. Tech. Phys. 68 (Suppl 2), S280–S287 (2023). https://doi.org/10.1134/S1063784223900140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223900140

Keywords:

Navigation