Skip to main content
Log in

Physical and Mechanical Characteristics of Biomaterials (Patches) for Problems of Numerical Simulation

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Five commercial patches and one unchanged native bovine xenopericardium are studied on a test setup to supplement the existing data on the physical and mechanical properties of commercial patches used for reconstructive interventions on the heart and blood vessels and to adapt the corresponding models for applications in computer simulation environment. The models are verified under conditions for numerical simulation of the uniaxial tension experiment using the finite element method. The full-scale study of physical and mechanical properties shows that all materials exhibit developed nonlinearity, which is manifested as an initial low-slope fragment of stress with a subsequent increase in rigidity. The results of numerical verification of the coefficients for models of hyperelastic materials show high convergence with the results of field tests. The results of evaluation of the physical and mechanical properties of patches for reconstructive surgery of the heart and blood vessels used in the Russian Federation are presented. The resulting coefficients of the models for these materials can be used in the environment of engineering analysis for the problems of numerical simulation using the finite element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. E. A. Ovcharenko, K. Yu. Klyshnikov, T. V. Glushkova, and L. S. Barbarash, Kompl. Probl. Serdechno-Sosud. Zabolev. 5 (1), 6 (2016). https://doi.org/10.17802/2306-1278-2016-2-39-45

    Article  Google Scholar 

  2. I. Yu. Zhuravleva, D. V. Nushtaev, K. V. Ardatov, R. M. Sharifulin, A. V. Afanas’ev, and A. V. Bogachev-Prokof’ev, Ross. Zh. Biomekh. 23 (4), 599 (2019). https://doi.org/10.15593/RZhBiomeh/2019.4.11

    Article  Google Scholar 

  3. D. V. Nushtaev, K. V. Ardatov, and D. B. Volkov-Bogorodskii, Ross. Zh. Biomekh. 24 (2), 167 (2020). https://doi.org/10.15593/RZhBiomeh/2020.2.04

    Article  Google Scholar 

  4. C. Martin and W. Sun, Biomech. Model. Mechanobiol. 3, 759 (2014). https://doi.org/10.1007/s10237-013-0532-x

    Article  Google Scholar 

  5. S. Duczek and U. Gabbert, Fundamental Principles of the Finite Element Method (Springer, Cham, 2018), p. 63. https://doi.org/10.1007/978-3-319-49715-0_4

    Book  MATH  Google Scholar 

  6. E. A. Ovcharenko, K. Yu. Klyshnikov, G. V. Savrasov, A. V. Batranin, V. I. Ganyukov, A. N. Kokov, D. V. Nushtaev, V. Yu. Dolgov, Yu. A. Kudryavtseva, and L. S. Barbarash, Sovr. Tekhnol. Med. 8 (1), 82 (2016). https://doi.org/10.17691/stm2016.8.1.11

    Article  Google Scholar 

  7. N. Farahani, A. Braun, D. Jutt, T. Huffman, N. Reder, Z. Liu, Y. Yagi, and L. Pantanowitz, J. Pathol. Inf. 8 (1), 36 (2017). https://doi.org/10.4103/jpi.jpi_32_17

    Article  Google Scholar 

  8. W. Wu, Z. Han, B. Hu, C. Du, Z. Xing, C. Zhang, J. Gao, B. Shan, and C. Chen, Ann. Transl. Med. 9 (2), 169 (2021). https://doi.org/10.21037/atm-20-2451

    Article  Google Scholar 

  9. E. A. Ovcharenko, K. Yu. Klyshnikov, T. V. Glushkova, A. Yu. Burago, and I. Yu. Zhuravleva, Tekhnol. Zhivykh Sist. 11 (6), 43 (2014).

    Google Scholar 

  10. V. Karade and B. Ravi, Int. J. Comput. Assist. Radiol. Surg. 10 (4), 473 (2015). https://doi.org/10.1007/s11548-014-1097-6

    Article  Google Scholar 

  11. A. Kulikajevas, R. Maskeliūnas, R. Damaševičius, and S. Misra, Sensors 19 (7), 1553 (2019). https://doi.org/10.3390/s19071553

    Article  ADS  Google Scholar 

  12. S. S. Lashkarinia, S. Piskin, T. A. Bozkaya, E. Salihoglu, C. Yerebakan, and K. Pekkan, Ann. Biomed. Eng. 46 (9), 1292 (2018). https://doi.org/10.1007/s10439-018-2043-5

    Article  Google Scholar 

  13. C. Capelli, E. Sauvage, G. Giusti, G. M. Bosi, H.  Ntsinjana, M. Carminati, G. Derrick, J. Marek, S. Khambadkone, A. M. Taylor, and S. Schievano, Interface Focus 8 (1), 20170021 (2018). https://doi.org/10.1098/rsfs.2017.0021

  14. M. Urbano and F. Auricchio, J. Funct. Biomater. 6 (2), 398 (2015). https://doi.org/10.3390/jfb6020398

    Article  Google Scholar 

  15. M. Jaskari, S. Ghosh, I. Miettunen, P. Karjalainen, and A. Järvenpää, Materials 14 (19), 5809 (2021). https://doi.org/10.3390/ma14195809

    Article  ADS  Google Scholar 

  16. E. A. Ovcharenko, K. U. Klyshnikov, A. E. Yuzhalin, G. V. Savrasov, T. V. Glushkova, G. U. Vasukov, D. V. Nushtaev, Y. A. Kudryavtseva, and L. S. Barbarash, Int. J. Biomed. Eng. Technol. 25 (1), 44 (2017). https://doi.org/10.1504/IJBET.2017.086551

    Article  Google Scholar 

  17. F. Sulejmani, A. Caballero, C. Martin, T. Pham, and W. Sun, J. Mech. Behav. Biomed. Mater. 97, 159 (2019). https://doi.org/10.1016/j.jmbbm.2019.05.020

    Article  Google Scholar 

  18. K. Murdock, C. Martin, and W. Sun, J. Mech. Behav. Biomed. Mater. 77, 148 (2018). https://doi.org/10.1016/j.jmbbm.2017.08.039

    Article  Google Scholar 

  19. P. P. Caimmi, M. Sabbatini, L. Fusaro, A. Borrone, and M. Cannas, J. Cardiovasc. Surg. 31 (8), 498 (2016). https://doi.org/10.1111/jocs.12799

    Article  Google Scholar 

  20. GOST (State Standard) ISO 37-2020: Rubber and Thermoelastoplasts. Determination of Tensile Stress-Strain Properties, 2022.

  21. A. Rassoli, N. Fatouraee, R. Guidoin, and Z. Zhang, Artif. Organs 44 (3), 278 (2020). https://doi.org/10.1111/aor.13552

    Article  Google Scholar 

  22. Yu. N. Zakharov, V. G. Borisov, R. Yu. Lider, A. N. Kazantsev, N. N. Burkov, M. S. Bayandin, and A. I. Anufriev, Khirurg. Zh. im. N.I. Pirogova, No. 6, 71 (2020). https://doi.org/10.17116/hirurgia202006171

  23. R. A. Vinogradov, Yu. N. Zakharov, V. G. Borisov, M. A. Chernyavskii, V. N. Kravchuk, D. V. Shmatov, K. P. Chernykh, A. N. Kazantsev, A. A. Sorokin, G. Sh. Bagdavadze, S. V. Artyukhov, and G. G. Khubulava, Neotl. Med. Pomoshch’. Zh. im. N.V. Sklifosovskogo 10 (2), 401 (2021). https://doi.org/10.23934/2223-9022-2021-10-2-401-407

    Article  Google Scholar 

  24. E. A. Ovcharenko, K. Yu. Klyshnikov, and T. V. Glushkova, Biomed. Eng. 49, 253 (2016). https://doi.org/10.1007/s10527-016-9543-0

    Article  Google Scholar 

Download references

Funding

The study was carried out within the framework of the Comprehensive scientific and technical program of a complete innovative cycle “Development and implementation of a complex of technologies in the fields of exploration and extraction of minerals, ensuring of industrial safety, bioremediation, creation of new products of deep processing of coal raw materials with consecutive amelioration of ecological impact on the environment and risks to human life” (approved by the Decree of the Government of the Russian Federation no. 1144-r).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Onishchenko.

Ethics declarations

The authors declare that there is no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onishchenko, P.S., Glushkova, T.V., Kostyunin, A.E. et al. Physical and Mechanical Characteristics of Biomaterials (Patches) for Problems of Numerical Simulation. Tech. Phys. 67, 707–712 (2022). https://doi.org/10.1134/S106378422210005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378422210005X

Keywords:

Navigation