Skip to main content
Log in

Diffusion Hardening of Sintered Ceramic W–Co Materials by Simultaneous Diffusion Saturation with Boron, Chromium, and Titanium

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Diffusion boronizing, as a method of thermochemical treatment, significantly improves the wear resistance and corrosion resistance of hardened products. The main disadvantage of boride coatings, which limits their application, is high fragility. This problem can be solved by applying multicomponent boron–based coatings using boron chromizing, boron titanizing, and boron–chromium–titanizing. Samples of sintered VK8 W–Co ceramics 12 mm in diameter and 10 mm in length were coated by a titanium daub (titanium powder with a particle size of 40 µm diluted in ethyl silicate). Simultaneous diffusion saturation with boron, chromium, and titanium was carried out in a chamber furnace equipped with a PID controller from a self-shielding powder. The temperature and time of saturation were equal to 1050°С and 1.5 h, respectively. After saturation, the samples were removed from the container and subjected to oil quenching starting directly from the saturation temperature. The hardness of the basic material on VK8 samples was 1740 ± 180 HV0.1. The maximal microhardness of diffusion coatings, 4600 HV0.1, was observed on samples precoated by a titanium daub and subjected to simultaneous saturation with boron, chromium, and titanium. For coatings obtained by simultaneous boron–chromium–titanium saturation without precoating, the maximal microhardness did not exceed 3500 HV0.1. The thickness of the diffusion layer on samples hardened using precoating by the titanium daub was 10 µm, and that of the diffusion coating simultaneously saturated wirth boron, chromium, and titanium was 12 µm. According to production test data for cast steel milling, the durability of removable titanium-daub-precoated VK8 cutting plates hardened by the simultaneous diffusion of boron, chromium, and titanium turned out to be 3.2–3.5 times higher than that of unhardened cutting plates and 1.5 times higher than the durability of cutting plates simultaneously saturated with boron, chromium, and titanium without titanium daub.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. S. Vereshchaka, A. V. Dacheva, and A. I. Anikeev, Processing of hard-to-process materials with a tool made of a hard alloy with a Re–Co-bundle of increased heat resistance and a nano-structured wear-resistant coating, in Proc. Int. Sci. Tech. Conf. “Automobile and Tractor Construction in Russia: Development Priorities and Personnel Training” Dedicated to the 145th Anniversary of MSTU “MAMI,” 2010, p. 39 [in Russian].

  2. D. Kassel, W. D. Hans, K. Dreyer, K. Rodider, W. Lengauer, and M. Lovonyak, FRG Patent No. 10225521 (December 18, 2003).

  3. A. B. Korshunov et al., RF Patent No. 2181643 (April 27, 2002).

  4. L. I. Aleksandrova, V. P. Bondarenko, T. V. Nayuk, et al., Sverkhtverd. Mater., No. 2, 3 (2006).

  5. V. G. Khizhnyak, V. Yu. Dolgikh, V. I. Korol’, et al., Nauchn. Vesti Nats. Tekh. Univ. “Kievsk. Politekh. Inst.”, No. 1, 74 (2002).

  6. L. Shourong, H. Jianmin, C. Lianging, and S. Junting, J. Chin. Rare Earth Soc. 20 (1), 26 (2002).

    Google Scholar 

  7. E. I. Bel’skii, M. V. Sitkevich, E. I. Ponkratin, and V. A. Stefanovich, Chemical and Thermal Treatment of Tool Materials (Nauka i Tehnika, Minsk, 1986) [in Russian].

    Google Scholar 

  8. A. M. Gur’ev, Yu. P. Kharaev, O. A. Gur’eva, and B. D. Lygdenov, Sovr. Probl. Nauki Obraz., No. 3, 65 (2006).

  9. M. A. Gur’ev, A. M. Gur’ev, A. G. Ivanov, and S. G. Ivanov, Mezhdunarod. Zh. Prikl. Fund. Issled., No. 5, 155 (2010).

  10. A. M. Gur’ev, E. V. Kozlov, A. I. Krymskikh, L. N. Ignatenko, and N. A. Popova, Izv. Vyssh. Uchebn. Zaved., Fiz. 43 (11), 60 (2000).

    Google Scholar 

  11. B. D. Lygdenov and A. M. Gur’ev, Izv. Vyssh. Uchebn. Zaved., Fiz. 43 (11), 269 (2000).

    Google Scholar 

  12. A. M. Gur’ev, É. V. Kozlov, A. I. Zhdanov, et al., Russ. Phys. J. 44, 183 (2001). https://doi.org/10.1023/A:1011326004528

    Article  Google Scholar 

  13. A. M. Gur’ev, S. G. Ivanov, M. A. Gur’ev, A. G. Ivanov, B. D. Lygdenov, S. A. Zemlyakov, and A. A. Dolgorov, Fund. Probl. Sovr. Materialoved. 7 (1), 27 (2010).

    Google Scholar 

  14. A. M. Guriev, S. G. Ivanov, and M. A. Guriev, Pis’ma Mater. 4 (4 (16)), 257 (2014).

    Google Scholar 

  15. M. A. Gur’ev, S. G. Ivanov, D. L. Alontseva, T. G. Ivanova, and A. M. Gur’ev, Pis’ma Mater. 4 (3 (15)), 179 (2014).

    Google Scholar 

  16. Biplab Sarma, Doctoral Dissertation of Philosophy (Univ. Utah, 2011).

  17. ASM Handbook, Vol. 4: Heat Treating (ASM Int., USA, 1991).

  18. M. Matsushita, Materials 4, 1309 (2011).

    Article  ADS  Google Scholar 

  19. F. E. Şeşen and Ö. S. Özgen, Sigma 32, 334 (2014).

    Google Scholar 

  20. S. G. Ivanov, A. M. Guriev, M. D. Starostenkov, T. G. Ivanova, and A. A. Levchenko, Russ. Phys. J. 57, 266 (2014). https://doi.org/10.1007/s11182-014-0234-6

    Article  Google Scholar 

  21. S. G. Ivanov, A. M. Gur’ev, E. V. Chernykh, M. A. Gur’ev, T. G. Ivanova, I. A. Garmaeva, V. V. Zobnev, and V. Gong, Fund. Probl. Sovr. Materialoved. 11 (1), 13 (2014).

    Google Scholar 

  22. ASM Handbook, Vol. 9: Metallography and Microstructures (ASM Int., 2004), pp. 493–512.

  23. A. A. Kazakov, S. V. Ryaboshuk, D. A. Lyubochko, and L. S. Chigintsev, Microsc. Microanal. 21 (3), 1755 (2015).

    Article  ADS  Google Scholar 

  24. G. Vander Voort, O. Pakhomova, and A. Kazakov, Mater. Perform. Charact. 5 (5), 521 (2016).

    Google Scholar 

  25. A. A. Kazakov and D. Kiselev, Metallogr., Microstruct., Anal. 5, 294 (2016).

    Google Scholar 

  26. G. F. Vander Voort, Mater. Charact. 27 (4), 241 (1991).

    Article  Google Scholar 

  27. A. A. Kazakov and D. Kiselev, Microsc. Microanal. 21 (3), 457 (2015).

    Article  ADS  Google Scholar 

  28. A. Kazakov, P. Kovalev, and S. Ryaboshuk, CIS Iron Steel Rev., Nos. 1–2, 7 (2007).

  29. A. A. Kazakov, D. V. Kiselev, O. V. Sych, and E. I. Khlusova, CIS Iron Steel Rev. 20, 41 (2020).

    Article  Google Scholar 

  30. A. A. Kazakov, A. I. Zhitenev, P. A. Ishpaev, O. V. Fomina, and P. V. Melnikov, CIS Iron Steel Rev. 19, 48 (2020).

    Article  Google Scholar 

  31. A. A. Kazakov, A. I. Zhitenev, A. S. Fedorov, and O. V. Fomina, Izv. Ferrous Metall. 63 (3–4), 254 (2020).

    Article  Google Scholar 

  32. S. G. Ivanov, A. M. Gur’ev, S. A. Zemlyakov, M. A. Gur’ev, and V. V. Romanenko, Polzunovsk. Vestn., No. 2, 165 (2020).

  33. A. M. Gur’ev, M. A. Gur’ev, S. A. Zemlyakov, and S. G. Ivanov, Identification of features of morphology and phase composition of steels by methods of special metallographic etching, in Proc. 16th Int. School-Seminar “Evolution of Defective Structures in Condensed Media”, 2020, p. 83 [in Russian].

  34. S. G. Ivanov, A. M. Gur’ev, S. A. Zemlyakov, and M. A. Gur’ev, Polzunovsk. Vestn., No. 3, 102 (2020).

  35. . M. Gur’ev, S. A. Zemlyakov, M. A. Gur’ev, E. A. Kosheleva, and S. G. Ivanov, Polzunovsk. Al’manakh, No. 3, 3 (2020)

  36. M. A. Gur’ev, S. G. Ivanov, A. M. Gur’ev, E. A. Kosheleva, and E. V. Chernykh, Polzunovsk. Al’manakh, No. 3, 19 (2020).

  37. S. G. Ivanov, M. A. Gur’ev, A. M. Gur’ev, and V. V. Romanenko, Fund. Probl. Sovr. Materialoved. 17 (1), 74 (2020).

    Google Scholar 

  38. A. M. Gur’ev, M. A. Gur’ev, S. G. Ivanov, and Sh. Mei, Mezhdunarod. Zh. Prikl. Fund. Issled., No. 10, 16 (2018).

  39. M. A. Gur’ev and S. G. Ivanov, Increasing the service life of a carbide tool by complex saturation with boron, chromium and titanium, in Abstr. 15th Int. School-Seminar “Evolution of Defective Structures in Condensed Media”, 2018, p. 108 [in Russian].

Download references

ACKNOWLEDGEMENTS

The study was carried out in the Center for Collective Use at the Polzunov Sate Technical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Gur’ev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gur’ev, A.M., Gur’ev, M.A., Ivanov, S.G. et al. Diffusion Hardening of Sintered Ceramic W–Co Materials by Simultaneous Diffusion Saturation with Boron, Chromium, and Titanium. Tech. Phys. 67, 692–695 (2022). https://doi.org/10.1134/S1063784222100024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222100024

Keywords:

Navigation