Skip to main content
Log in

Measurement and Simulation of Partial Discharges in Solid Fuels

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

This work is devoted to a study of the characteristics of partial discharges (PDs) in solid fuels. The appearance of partial discharges in solid fuels occurs at very low voltages, which are not typical for most dielectrics. The activity of these partial discharges leads to breakdown of the rock. The characteristics of partial discharges in oil shales of the Huadan deposit (China) given in the paper indicate the voltage value at which partial discharges occur and breakdown occurs, and also show the nature of the dependence of the characteristics on voltage. An attempt was made to explain the low value of the PD initiation voltage in solid fuels, as well as to substantiate the possibility of using the PD characteristics to predict the onset of breakdown of the interelectrode distance for use in the technology of in-situ heating and pyrolysis of solid fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. R. Dyni, Sci. Invest. Rep. 2005-5294 (U.S. Geological Survey, 2006). https://doi.org/10.3133/sir29955294

  2. Z. Kang, Y. Zhao, and D. Yang, Appl. Energy 269, 115121 (2020). https://doi.org/10.1016/j.apenergy.2020.115121

  3. A. Reva and A. Blinderman, in Underground Coal Gasification and Combustion (Woodhead, 2018), pp. 527–579. https://doi.org/10.1016/B978-0-08-100313-8.00016-5

    Book  Google Scholar 

  4. H. Vinegar, Proc. 26th Oil Shale Symp. (Golden, October 16–18, 2006), p. 1.

  5. A. R. Brandt, Environ. Sci. Technol. 42 (19), 7489 (2008). https://doi.org/10.1021/es800531f

    Article  ADS  Google Scholar 

  6. V. V. Lopatin, S. M. Martemyanov, A. A. Bukharkin, and I. A. Koryashov, Proc. 8th Int. Forum on Strategic Technology (IFOST2013) (Ulaanbaatar, June 28 – Jule 1, 2013), vol. 1, p. 547. https://doi.org/10.1088/1742-6596/552/1/012012

  7. S. M. Martemyanov, A. A. Bukharkin, B. T. Ermagambet, and Z. M. Kasenova, Int. J. Coal Prep. Util. (2021). https://doi.org/10.1080/19392699.2021.1957855

  8. E. Kuffel, W. S. Zaengl, and J. Kuffel, High Voltage Engineering. Fundamentals, 2nd ed. (Butterworth–Heinemann, Oxford, 2000).

    Google Scholar 

  9. J. Densley, IEEE Electr. Insul. Mag. 17 (5), 14 (2001). https://doi.org/10.1109/57.901613

    Article  Google Scholar 

  10. F. H. Kreuger, Partial Discharge Detection in High-Voltage Equipment (Butterworths, London, 1989).

    Google Scholar 

  11. L. A. Dissado and J. C. Fothergill, Electrical Degradation and Breakdown in Polymers (Inst. Eng. Technol., Stevenage, UK, 1992).

    Book  Google Scholar 

  12. A. A. Bukharkin, V. V. Lopatin, S. M. Martemyanov, and I. A. Koryashov, J. Phys.: Conf. Ser. 552 (1), 012012 (2014). https://doi.org/10.1088/1742-6596/552/1/012012

  13. X. Chen, P. H. F. Morshuis, Q. Zhuang, J. J. Smit, and Z. Xu, Proc. 10th IEEE Int. Conf. on Solid Dielectrics (IEEE, 2010). https://doi.org/10.1109/ICSD.2010.5568110

  14. M. G. Danikas and F. K. Prionistis, Facta Univ., Ser. Electron. Energ. 17, 99 (2004). https://doi.org/10.1109/ELINSL.2008.4570405

    Article  Google Scholar 

  15. R. Schwarz, T. Judendorfer, and M. Muhr, “Review of partial discharge monitoring techniques used in high voltage equipment,” in Ann. Rep. Conf. on Electrical Insulation and Dielectric Phenomena (IEEE, 2008), p. 400. https://doi.org/10.1109/CEIDP.2008.4772825

  16. E. Lemke, S. Berlijn, E. Gulski, H. M. Muhr, E. Pultrum, T. Strehl, and G. Rizzi, Electra 241, 60 (2008).

    Google Scholar 

  17. Y. Suzuoki, F. Komori, and T. Mizutani, J. Phys. D: Appl. Phys. 29 (11), 2922 (1996).

    Article  ADS  Google Scholar 

  18. R. Vogelsang, B. Fruth, T. Farr, and K. Fröhlich, Eur. Trans. Electr. Power 15 (3), 271 (2005). https://doi.org/10.1002/etep.60

    Article  Google Scholar 

  19. J. H. Schön, Physical Properties of Rocks: Fundamentals and Principles of Petrophysics (Elsevier, Amsterdam, 2015).

    Google Scholar 

  20. Practical Handbook of Physical Properties of Rocks and Minerals, Ed. by R. S. Carmichael (CRC Press, Boca Raton, 2017).

    Google Scholar 

  21. D. O’Neill, R. M. Bowman, and J. M. Gregg, Appl. Phys. Lett. 77 (10), 1520 (2000). https://doi.org/10.1063/1.1290691

    Article  ADS  Google Scholar 

  22. Y. J. Li, X. M. Chen, R. Z. Hou, and Y. H. Tang, Solid State Commun. 137 (3), 120 (2006). https://doi.org/10.1016/j.ssc.2005.11.017

    Article  ADS  Google Scholar 

  23. J. Liu, C. G. Duan, W. G. Yin, W. N. Mei, R. W. Smith, and J. R. Hardy, Phys. Rev. B 70 (14), 144106 (2004). https://doi.org/10.1103/PhysRevB.70.144106

  24. W. Li and R. W. Schwartz, Phys. Rev. B 75 (1), 012104 (2007). https://doi.org/10.1103/PhysRevB.75.012104

  25. V. F. Vazhov, V. M. Muratov, S. Y. Datskevich, M. Y. Zhurkov, and R. R. Gafarov, Phys. Solid State 55 (4), 725 (2013). https://doi.org/10.1134/S1063783413040355

    Article  ADS  Google Scholar 

  26. S. J. Dodd, N. M. Chalashkanov, and J. C. Fothergill, “Partial discharge patterns in conducting and non-conducting electrical trees,” in Proc. 10th IEEE Int. Conf. on Solid Dielectrics (IEEE, 2010), p. 1. https://doi.org/10.1109/ICSD.2010.5568217

  27. J. V. Champion and S. J. Dodd, J. Phys. D: Appl. Phys. 34 (8), 1235 (2001). https://doi.org/10.1088/0022-3727/34/8/314

    Article  ADS  Google Scholar 

  28. E. Lemke, IEEE Electr. Insul. Mag. 28 (6), 11 (2012). https://doi.org/10.1109/MEI.2012.6340519

    Article  Google Scholar 

  29. J. V. Champion, S. J. Dodd, and J. M. Alison, J. Phys. D: Appl. Phys. 29 (10), 2689 (1996). https://doi.org/10.1088/0022-3727/29/10/023

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by a grant from the Russian Science Foundation, project no. 20-79-00068.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Martemyanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martemyanov, S.M., Bukharkin, A.A. Measurement and Simulation of Partial Discharges in Solid Fuels. Tech. Phys. 67, 146–151 (2022). https://doi.org/10.1134/S1063784222030033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222030033

Keywords:

Navigation