Skip to main content
Log in

Dissipative Tunneling of Electrons in Vertically Coupled Double Asymmetric InAs/GaAs(001) Quantum Dots

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We report the results of experimental studies of the photoelectric properties of a p–i–n GaAs photodiode with InAs/GaAs(001) double asymmetric quantum dots (DAQDs) grown by self-assembling in the metal–organic vapor-phase epitaxy process. Three peaks were observed in the dependence of the photocurrent on the reverse bias measured at monochromatic photoexcitation of the DAQDs at the wavelength corresponding to the energy of interband optical transitions between the ground hole and electron states in the larger quantum dots (QDs). These peaks were related to the tunneling of the photoexcited electrons between the QDs, including a dissipative one (with emission and absorption of optical phonons). The experimental results agree qualitatively with the theoretical field dependence of the probability of 1D dissipative tunneling between QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. O. Caldeira and A. J. Leggett, Ann. Phys. 149 (2), 374 (1983).

    Article  ADS  Google Scholar 

  2. A. I. Larkin and Yu. N. Ovchinnikov, Phys. Rev. B 28 (11), 6281 (1983).

    Article  ADS  Google Scholar 

  3. B. I. Ivlev and Yu. N. Ovchinnikov, J. Exp. Theor. Phys. 66 (2), 378 (1987).

    ADS  Google Scholar 

  4. A. K. Aringazin, Yu. I. Dahnovsky, V. D. Krevchik, M. B. Semenov, A. A. Ovchinnikov, and K. Yamamoto, Phys. Rev. B 68, 155426 (2003).

  5. Yu. N. Ovchinnikov, J. Exp. Theor. Phys. 104 (2), 254 (2007). https://doi.org/10.1134/S1063776107020100

    Article  ADS  Google Scholar 

  6. V. A. Benderskii, E. V. Vetoshkin, H. P. Trommsdorff, and E. I. Kats, Phys. Rev. E 67, 026102 (2003).

  7. Transfer Processes in Low-Dimensional Systems: Collection of Articles, Which is Dedicated to the Prof. A.A. Ovchinnikov and Prof. A.I. Larkin’s Memory, Ed. by Yu. Dahnovsky (UT Res. Inst., Tokyo, 2005). https://iss.ndl.go.jp/books/R100000002-I000008124514-00

    Google Scholar 

  8. V. C. Zhukovskii, Yu. I. Dakhnovskii, O. N. Gorshkov, V. D. Krevchik, M. B. Semenov, Yu. G. Smirnov, E.  V.  Chuprunov, V. A. Rudin, N. Yu. Skibitskaya, P.   V. Krevchik, D. O. Filatov, D. A. Antonov, M. A. Lapshina, M. E. Shenina, and K. Yamamoto, Moscow Univ. Phys. Bull. 64 (5), 475 (2009). https://doi.org/10.3103/S0027134909050014

    Article  ADS  Google Scholar 

  9. V. C. Zhukovskii, O. N. Gorshkov, V. D. Krevchik, M. B. Semenov, E. V. Groznaya, D. O. Filatov, and D. A. Antonov, Moscow Univ. Phys. Bull. 64 (1), 27 (2009). https://doi.org/10.3103/S0027134909010068

    Article  ADS  Google Scholar 

  10. D. Filatov, D. Guseinov, I. Antonov, A. Kasatkin, and O. Gorshkov, RSC Adv. 4, 57337 (2014).

    Article  ADS  Google Scholar 

  11. Controlled Dissipative Tunneling. Tunnel Transport in Low-Dimensional Systems, Ed. by A. J. Leggett (Fizmatlit, Moscow, 2011) [in Russian]. ISBN 978-5-9221-1362-5.

    Google Scholar 

  12. F. V. Kusmartsev, V. D. Krevchik, M. B. Semenov, D. O. Filatov, A. V. Shorokhov, A. A. Bukharaev, Y. Dakhnovsky, A. V. Nikolaev, N. A. Pyataev, R. V. Zaytsev, P. V. Krevchik, I. A. Egorov, K. Yamamoto, and A. K. Aringazin, JETP Lett. 104, 392 (2016). https://doi.org/10.1134/S0021364016180016

    Article  ADS  Google Scholar 

  13. N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, et al., Semiconductors 32 (4), 343 (1998). https://doi.org/10.1134/1.1187396

    Article  ADS  Google Scholar 

  14. O. Stier, M. Grundmann, and D. Bimberg, Phys. Rev. B 59 (8), 5688 (1999).

    Article  ADS  Google Scholar 

  15. I. A. Karpovich, B. N. Zvonkov, N. V. Baidus’, et al., Trends in Nanotechnology Research (Nova Sci., New York, 2004).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Prof. A.J. Leggett for helpful discussions, as well as the Central Collective Use Center of Moscow State University and Lobachevsky Institute of Physics of Solid-State Nanostructures for help with the experimental part of this work.

Funding

This work was supported by a grant from the Ministry of Science and Higher Education of the Russian Federation, no. 0748-2020-0012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Semenov.

Ethics declarations

The authors confirm that they have no conflicts of interest.

APPENDIX

APPENDIX

Let us consider (3) taking into account the interaction with two local phonon modes (\({{\omega }_{{L1}}} = {{\omega }_{2}}\) and \({{\omega }_{{L2}}} = {{\omega }_{3}}\)). For simplicity, we will assume this interaction to be sufficiently small; i.e., \(\frac{C}{{\omega _{0}^{2}}}\) \( \ll \) 1 and \(\frac{C}{{\omega _{L}^{2}}}\) \( \ll \) 1. In this case ζn = \(\nu _{n}^{2}\sum\nolimits_{\alpha = 2}^N {\frac{{C_{\alpha }^{2}}}{{\omega _{\alpha }^{2}(\omega _{\alpha }^{2} + \nu _{n}^{2})}}} \), where νn = \(\frac{{2\pi n}}{\beta }\) and β = \(\frac{\hbar }{{kT}}\).

$${{\zeta }_{n}} = \nu _{n}^{2}\frac{{C_{2}^{2}}}{{\omega _{2}^{2}(\omega _{2}^{2} + \nu _{n}^{2})}} + \nu _{n}^{2}\frac{{C_{3}^{2}}}{{\omega _{3}^{2}(\omega _{3}^{2} + \nu _{n}^{2})}};$$
$${{\sin }^{2}}{{\nu }_{n}}{{\tau }_{0}} = \frac{1}{2}(1 - \cos 2{{\nu }_{n}}{{\tau }_{0}}).$$

As a result, the sum in the last term of expression (3) will be rewritten as U = U1U2, where

$$\begin{gathered} {{U}_{1}} \\ = \frac{1}{2}\sum\limits_{n = 1}^\infty \frac{1}{{\nu _{n}^{2}\left( {\nu _{n}^{2} + \omega _{0}^{2} + \nu _{n}^{2}\frac{{C_{2}^{2}}}{{\omega _{2}^{2}(\omega _{2}^{2} + \nu _{n}^{2})}}\nu _{n}^{2} + \frac{{C_{3}^{2}}}{{\omega _{3}^{2}(\omega _{3}^{2} + \nu _{n}^{2})}}} \right)}} \\ \\ {{U}_{2}} \\ = \frac{1}{2}\sum\limits_{n = 1}^\infty \frac{{{\text{cos}}2{{\nu }_{n}}{{\tau }_{0}}}}{{\nu _{n}^{2}\left( {\nu _{n}^{2} + \omega _{0}^{2} + \nu _{n}^{2}\frac{{C_{2}^{2}}}{{\omega _{2}^{2}(\omega _{2}^{2} + \nu _{n}^{2})}}\nu _{n}^{2} + \frac{{C_{3}^{2}}}{{\omega _{3}^{2}(\omega _{3}^{2} + \nu _{n}^{2})}}} \right)}}. \\ \end{gathered} $$
(A.1)

Denote \(\nu _{2}^{2}\) = x and transform the expression in the denominator:

$$\begin{gathered} x[(x + \omega _{0}^{2})\omega _{2}^{2}\omega _{3}^{2}(x + \omega _{2}^{2})(x + \omega _{3}^{2}) \\ + \,xC_{2}^{2}\omega _{3}^{2}(x + \omega _{3}^{2}) + xC_{3}^{2}\omega _{2}^{2}(x + \omega _{2}^{2})] \\ \end{gathered} $$
$$\begin{gathered} = x[\omega _{2}^{4}\omega _{3}^{4}x + \omega _{2}^{2}\omega _{3}^{2}{{x}^{3}} + \omega _{3}^{2}\omega _{3}^{2}{{x}^{2}}(\omega _{2}^{2} + \omega _{3}^{2}) \\ + \,\,\omega _{2}^{4}\omega _{3}^{4}\omega _{0}^{2} + \omega _{2}^{2}\omega _{3}^{2}\omega _{0}^{2}{{x}^{2}} + \omega _{2}^{2}\omega _{3}^{2}\omega _{0}^{2}x(\omega _{2}^{2} + \omega _{3}^{2}) \\ + \,\,C_{2}^{2}\omega _{3}^{4}x + C_{2}^{2}\omega _{3}^{2}{{x}^{2}} + C_{3}^{2}\omega _{2}^{4}x + C_{3}^{2}\omega _{2}^{2}{{x}^{2}}] \\ \end{gathered} $$
$$\begin{gathered} = x[\omega _{2}^{2}\omega _{3}^{2}{{x}^{3}} + {{x}^{2}}\{ \omega _{2}^{2}\omega _{3}^{2}(\omega _{2}^{2} + \omega _{3}^{2}) + \omega _{0}^{2}\omega _{2}^{2}\omega _{3}^{2} \\ \, + C_{2}^{2}\omega _{3}^{2} + C_{3}^{2}\omega _{2}^{2}\} + x\{ \omega _{2}^{4}\omega _{3}^{4} + \omega _{0}^{2}\omega _{2}^{2}\omega _{3}^{2}(\omega _{2}^{2} + \omega _{3}^{2}) \\ \, + C_{2}^{2}\omega _{3}^{4} + C_{3}^{2}\omega _{2}^{4}\} + \omega _{0}^{2}\omega _{2}^{4}\omega _{3}^{4}] \\ \end{gathered} $$
$$\begin{gathered} = x\omega _{2}^{2}\omega _{3}^{2}\left[ {{{x}^{3}} + {{x}^{2}}\left\{ {\omega _{2}^{2} + \omega _{3}^{2} + \omega _{0}^{2} + \frac{{C_{2}^{2}}}{{\omega _{2}^{2}}} + \frac{{C_{3}^{2}}}{{\omega _{3}^{2}}}} \right\}} \right. \\ \left. { + \,x\left\{ {\omega _{2}^{2}\omega _{3}^{3} + \omega _{0}^{2}(\omega _{2}^{2} + \omega _{3}^{2}) + \frac{{C_{2}^{2}\omega _{3}^{2}}}{{\omega _{2}^{2}}} + \frac{{C_{3}^{2}\omega _{2}^{2}}}{{\omega _{3}^{2}}}} \right\} + \omega _{0}^{2}\omega _{2}^{2}\omega _{3}^{2}} \right]. \\ \end{gathered} $$

We introduce the following notation: A = \(\omega _{2}^{2}\) + \(\omega _{3}^{2}\) + \(\omega _{0}^{2}\) + \(\frac{{C_{2}^{2}}}{{\omega _{2}^{2}}}\) + \(\frac{{C_{3}^{2}}}{{\omega _{3}^{2}}}\),

$${{B}_{\omega }} = \omega _{2}^{2}\omega _{3}^{2} + \omega _{0}^{2}(\omega _{2}^{2} + \omega _{3}^{2}) + \frac{{C_{2}^{2}\omega _{3}^{2}}}{{\omega _{2}^{2}}} + \frac{{C_{3}^{2}\omega _{2}^{2}}}{{\omega _{3}^{2}}},$$
$$C = \omega _{0}^{2}\omega _{2}^{2}\omega _{3}^{2}.$$

The expression in the denominator of the first term in (A.1) then takes the form

$$\begin{gathered} x\omega _{2}^{2}\omega _{3}^{2}[\underbrace {{{x}^{3}} + A{{x}^{2}} + {{B}_{\omega }}x + C}_{ = 0}] \\ = x\omega _{0}^{2}\omega _{3}^{2}(x - {{x}_{1}})(x - {{x}_{2}})(x - {{x}_{3}}). \\ \end{gathered} $$

Let us designate Q = \(\frac{{{{A}^{2}} - 3{{B}_{\omega }}}}{9}\); R = \(\frac{{2{{A}^{3}} - 9A{{B}_{\omega }} + 27C}}{{54}}\), S = Q3R2; Φ = \(\frac{1}{3}\arccos \left( {\frac{R}{{\sqrt {{{Q}^{3}}} }}} \right)\). If S > 0, then

$$\begin{gathered} {{x}_{1}} = - 2\sqrt Q \cos (\Phi ) - \frac{A}{3}, \\ {{x}_{2}} = - 2\sqrt Q \cos \left( {\Phi + \frac{2}{3}\pi } \right) - \frac{A}{3}, \\ {{x}_{3}} = - 2\sqrt Q \cos \left( {\Phi - \frac{2}{3}\pi } \right) - \frac{A}{3}. \\ \end{gathered} $$
(A.2)

The first sum in (A.1) is converted to the form

$$U_{1}^{{}} = \frac{1}{2}\sum\limits_{n = 1}^\infty \frac{{\omega _{2}^{2}\omega _{3}^{2}(\omega _{2}^{2} + \nu _{n}^{2})(\omega _{3}^{2} + \nu _{n}^{2})}}{{\nu _{n}^{2}\omega _{2}^{2}\omega _{3}^{2}(\nu _{n}^{2} - {{x}_{1}})(\nu _{n}^{2} - {{x}_{2}})(\nu _{n}^{2} - {{x}_{3}})}}.$$
(A.3)

The last expression in (A.1) is divided into simple fractions:

$$\begin{gathered} \frac{{{{\beta }_{0}}}}{x} + \frac{\gamma }{{x - {{x}_{1}}}} + \frac{\varphi }{{x - {{x}_{2}}}} + \frac{\Delta }{{x - {{x}_{3}}}} \\ = \frac{{{{x}^{2}} + x(\omega _{2}^{2} + \omega _{3}^{2}) + \omega _{2}^{2}\omega _{3}^{2}}}{{x(x - {{x}_{1}})(x - {{x}_{2}})(x - {{x}_{3}})}}, \\ \end{gathered} $$

where

$${{\beta }_{0}} = - \frac{{\omega _{2}^{2}\omega _{3}^{2}}}{{{{x}_{1}}{{x}_{2}}{{x}_{3}}}},$$
$$\begin{gathered} \Delta = \frac{{x_{3}^{2}}}{{({{x}_{3}} - {{x}_{2}})({{x}_{1}} - {{x}_{3}})}} \\ \times \,\,\left\{ {\frac{{\omega _{2}^{2}\omega _{3}^{2}}}{{{{x}_{1}}{{x}_{2}}{{x}_{3}}}}\left( {\frac{{{{x}_{1}}{{x}_{2}} + {{x}_{1}}{{x}_{3}} + {{x}_{2}}{{x}_{3}}}}{{{{x}_{2}}{{x}_{3}}}} - 1} \right)} \right. \\ + \,\,\frac{{\omega _{2}^{2} + \omega _{3}^{2}}}{{{{x}_{2}}{{x}_{3}}}} - \frac{1}{{{{x}_{3}}}}\left( {1 + \frac{{\omega _{2}^{2}\omega _{3}^{2}}}{{{{x}_{1}}{{x}_{2}}{{x}_{3}}}}\left[ {\frac{{{{x}_{1}}{{x}_{2}} + {{x}_{1}}{{x}_{3}} + {{x}_{2}}{{x}_{3}}}}{{{{x}_{2}}{{x}_{3}}}}} \right.} \right. \\ \left. {\left. {\left. {_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{}}}}}}}}}}}}}}}}}}}} + \,\,({{x}_{2}} + {{x}_{3}} - {{x}_{1}})} \right]} \right) + \frac{{(\omega _{2}^{2} + \omega _{3}^{2})({{x}_{2}} + {{x}_{3}})}}{{{{x}_{2}}{{x}_{3}}}}} \right\}, \\ \end{gathered} $$
$$\begin{gathered} \varphi = \frac{{{{x}_{2}}}}{{{{x}_{3}}({{x}_{2}} - {{x}_{1}})}}\left\{ {\Delta \frac{{{{x}_{2}}}}{{{{x}_{3}}}}({{x}_{1}} - {{x}_{3}}) - 1} \right. \\ - \,\,\frac{{\omega _{2}^{2}\omega _{3}^{2}}}{{{{x}_{1}}{{x}_{2}}{{x}_{3}}}}({{x}_{2}} + {{x}_{3}} - {{x}_{1}}) - \frac{{{{x}_{2}} + {{x}_{3}}}}{{{{x}_{2}}{{x}_{3}}}} \\ \left. { \times \,\,\left\{ {\omega _{2}^{2} + \omega _{3}^{2} + \frac{{\omega _{2}^{2}\omega _{3}^{2}}}{{{{x}_{1}}{{x}_{2}}{{x}_{3}}}}({{x}_{1}}{{x}_{2}} + {{x}_{1}}{{x}_{3}} + {{x}_{2}}{{x}_{3}})} \right\}} \right\}, \\ \end{gathered} $$
(A.4)
$$\begin{gathered} \gamma = \frac{1}{{{{x}_{2}}{{x}_{3}}}}\{ \omega _{2}^{2} + \omega _{3}^{2} - \Delta {{x}_{1}}{{x}_{2}} - {{\varphi }_{1}}{{x}_{3}} \\ - \,\,{{\beta }_{0}}({{x}_{2}}{{x}_{3}} + {{x}_{1}}({{x}_{2}} + {{x}_{3}}))\} ,\quad {{\nu }_{n}} = \frac{{2\pi n}}{\beta }. \\ \end{gathered} $$

Eventually, U1 is converted to the form

$${{U}_{1}} = \frac{1}{2}\sum\limits_{n = 1}^\infty {\left( {\frac{{{{\beta }_{0}}}}{{\nu _{n}^{2}}} + \frac{\gamma }{{\nu _{n}^{2} - {{x}_{1}}}} + \frac{\varphi }{{\nu _{n}^{2} - {{x}_{2}}}} + \frac{\Delta }{{\nu _{n}^{2} - {{x}_{3}}}}} \right).} $$
$$\begin{gathered} \sum\limits_{n = 1}^\infty {\frac{{{{\beta }_{0}}}}{{\nu _{n}^{2}}} = {{\beta }_{0}}\sum\limits_{n = 1}^\infty {\frac{{{{\beta }^{2}}}}{{4{{\pi }^{2}}{{n}^{2}}}}} } \\ = {{\beta }_{0}}\frac{{{{\beta }^{2}}}}{{4{{\pi }^{2}}}}\sum\limits_{n = 1}^\infty {\frac{1}{{{{n}^{2}}}} = {{\beta }_{0}}\frac{{{{\beta }^{2}}}}{{24}}} , \\ \end{gathered} $$
$${{x}_{1}} = - 2\sqrt Q \cos \phi - \frac{A}{3} = - {{x}_{{10}}} = - \left( {2\sqrt Q \cos \phi + \frac{A}{3}} \right).$$

If x1 < 0;

$$\begin{gathered} \sum\limits_{n = 1}^\infty {\frac{\gamma }{{\nu _{n}^{2} + {{x}_{{10}}}}}} = \sum\limits_{n = 1}^\infty {\frac{\gamma }{{\frac{{4{{\pi }^{2}}{{n}^{2}}}}{{{{\beta }^{2}}}} + {{x}_{{10}}}}}} \\ = \frac{{\gamma {{\beta }^{2}}}}{{4{{\pi }^{2}}}}\sum\limits_{n = 1}^\infty {\frac{1}{{{{n}^{2}} + \frac{{{{x}_{{10}}}{{\beta }^{2}}}}{{4{{\pi }^{2}}}}}}} \\ \end{gathered} $$
$$\begin{gathered} = \frac{{\gamma {{\beta }^{2}}}}{{4{{\pi }^{2}}}}\left[ { - \frac{{4{{\pi }^{2}}}}{{2{{x}_{1}}{{\beta }^{2}}}} - \frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{1}}} \beta }}{\text{cot}}\left( {\frac{{\sqrt {{{x}_{1}}} \beta }}{{2\pi }}} \right)} \right]; \\ \tilde {x}_{{10}}^{2} = \frac{{{{x}_{{10}}}{{\beta }^{2}}}}{{4{{\pi }^{2}}}}, \\ \end{gathered} $$
$$\begin{gathered} {{x}_{2}} = - 2\sqrt Q \cos \left( {\Phi + \frac{2}{3}\pi } \right) - \frac{A}{3} = - {{x}_{{20}}}, \\ \tilde {x}_{{20}}^{2} = \frac{{{{x}_{{20}}}{{\beta }^{2}}}}{{4{{\pi }^{2}}}}, \\ \end{gathered} $$
$$\begin{gathered} {{x}_{3}} = - 2\sqrt Q \cos \left( {\Phi - \frac{2}{3}\pi } \right) - \frac{A}{3} = - {{x}_{{30}}}, \\ \tilde {x}_{{30}}^{2} = \frac{{{{x}_{{30}}}{{\beta }^{2}}}}{{4{{\pi }^{2}}}}. \\ \end{gathered} $$

If x1 > 0, x2 > 0, x3 > 0:

$$\begin{gathered} {{U}_{1}} = \frac{1}{2}\left\{ {{{\beta }_{0}}\frac{{{{\beta }^{2}}}}{{24}} + \frac{{\gamma {{\beta }^{2}}}}{{4{{\pi }^{2}}}}\left[ { - \frac{{4{{\pi }^{2}}}}{{2{{x}_{1}}{{\beta }^{2}}}} - \frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{1}}} \beta }}\cot \left( {\frac{{\sqrt {{{x}_{1}}} \beta }}{2}} \right)} \right]} \right. \\ + \frac{{\varphi {{\beta }^{2}}}}{{4{{\pi }^{2}}}}\left[ { - \frac{{4{{\pi }^{2}}}}{{2{{x}_{2}}{{\beta }^{2}}}} - \frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{1}}} \beta }}\cot \left( {\frac{{\sqrt {{{x}_{2}}} \beta }}{2}} \right)} \right] \\ \left. { + \frac{{\Delta {{\beta }^{2}}}}{{4{{\pi }^{2}}}}\left[ { - \frac{{4{{\pi }^{2}}}}{{2{{x}_{3}}{{\beta }^{2}}}} - \frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{3}}} \beta }}\cot \left( {\frac{{\sqrt {{{x}_{3}}} \beta }}{2}} \right)} \right]} \right\}. \\ \end{gathered} $$
(A.5)

Let us move on to calculation of U2:

$$\begin{gathered} {{U}_{2}} = \frac{1}{2}\sum\limits_{n = 1}^\infty {\left( {\frac{{{{\beta }_{0}}\cos 2{{\nu }_{n}}{{T}_{0}}}}{{\nu _{n}^{2}}} + \frac{{\gamma \cos 2{{\nu }_{n}}{{T}_{0}}}}{{\nu _{n}^{2} - {{x}_{1}}}}} \right.} \\ \left. { + \frac{{\varphi \cos 2{{\nu }_{n}}{{T}_{0}}}}{{\nu _{n}^{2} - {{x}_{2}}}} + \frac{{\Delta \cos 2{{\nu }_{n}}{{T}_{0}}}}{{\nu _{n}^{2} - {{x}_{3}}}}} \right), \\ \end{gathered} $$
$$\begin{gathered} \frac{1}{2}\sum\limits_{n = 1}^\infty {\frac{{{{\beta }_{0}}{{{\cos }}^{2}}\frac{{2\pi {{T}_{0}}n}}{\beta }}}{{\frac{{4{{\pi }^{2}}{{n}^{2}}}}{{{{\beta }^{2}}}}}} = \frac{1}{2}\left[ {\frac{{{{\beta }^{2}}{{\beta }_{0}}}}{{4{{\pi }^{2}}}}\sum\limits_{n = 1}^\infty {\frac{{{{{\cos }}^{2}}\frac{{2\pi {{T}_{0}}}}{\beta }n}}{{{{n}^{2}}}}} } \right]} \\ = \frac{1}{2}\left[ {\frac{{{{\beta }^{2}}{{\beta }_{0}}}}{{4{{\pi }^{2}}}}\frac{1}{{12}}\left( {3\frac{{{{{(4\pi {{T}_{0}})}}^{2}}}}{\beta } - 6\pi \frac{{4\pi {{T}_{0}}}}{\beta } + 2{{\pi }^{2}}} \right)} \right] \\ + \,\,\frac{1}{2}\gamma \sum\limits_{n = 1}^\infty {\frac{{\cos \frac{{4\pi {{T}_{0}}n}}{\beta }}}{{\frac{{4{{\pi }^{2}}{{n}^{2}}}}{{{{\beta }^{2}}}} - {{x}_{1}}}}} = \frac{1}{2}\left[ {\frac{{{{\beta }^{2}}\gamma }}{{4{{\pi }^{2}}}}\sum\limits_{n = 1}^\infty {\frac{{\cos \frac{{4\pi {{T}_{0}}}}{\beta }n}}{{{{n}^{2}} - \frac{{{{x}_{1}}{{\beta }^{2}}}}{{4{{\pi }^{2}}}}}}} } \right] \\ = \frac{1}{2}\left[ {\frac{{{{\beta }^{2}}\gamma }}{{4{{\pi }^{2}}}}\left\{ {\frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{1}}} \beta }}\cos \left[ {\left( {\pi - \frac{{4\pi {{T}_{0}}}}{\beta }} \right)\frac{{\sqrt {{{x}_{1}}} \beta }}{{2\pi }}} \right]} \right.} \right. \\ \left. {\left. { \times \,{\text{cosec}}\frac{{\sqrt {{{x}_{1}}} \beta }}{2} + \frac{{2{{\pi }^{2}}}}{{{{x}_{1}}{{\beta }^{2}}}}} \right\}} \right]. \\ \end{gathered} $$

At \({{x}_{1}},{{x}_{2}},{{x}_{3}} > 0\),

$$\begin{gathered} {{U}_{2}} = \frac{1}{2}\left\{ {\frac{{{{\beta }_{0}}{{\beta }^{2}}}}{{48}}\left( {3\frac{{{{{(4\pi {{T}_{0}})}}^{2}}}}{\beta } - \frac{{24{{\pi }^{2}}{{T}_{0}}}}{\beta } + 2{{\pi }^{2}}} \right)} \right. \\ + \,\,\frac{{\gamma {{\beta }^{2}}}}{{4{{\pi }^{2}}}}\left\{ {\frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{1}}} \beta }}\cos \left[ {\left( {\pi - \frac{{4\pi {{T}_{0}}}}{\beta }} \right)\frac{{\sqrt {{{x}_{1}}} \beta }}{{2\pi }}} \right]{\text{cosec}}\frac{{\sqrt {{{x}_{1}}} \beta }}{2}} \right\} \\ \end{gathered} $$
$$\begin{gathered} + \frac{{\varphi {{\beta }^{2}}}}{{4{{\pi }^{2}}}}\left\{ {\frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{2}}} \beta }}\cos \left[ {\left( {\pi - \frac{{4\pi {{T}_{0}}}}{\beta }} \right)\frac{{\sqrt {{{x}_{2}}} \beta }}{{2\pi }}} \right]} \right. \\ \left. { \times \,{\text{cosec}}\frac{{\sqrt {{{x}_{2}}} \beta }}{2} - \frac{{2{{\pi }^{2}}}}{{{{x}_{2}}{{\beta }^{2}}}}} \right\}. \\ \end{gathered} $$
(A.6)
$$\begin{gathered} + \frac{{\Delta {{\beta }^{2}}}}{{4{{\pi }^{2}}}}\left\{ {\frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{3}}} \beta }}} \right.\cos \left[ {\left( {\pi - \frac{{4\pi {{T}_{0}}}}{\beta }} \right)\frac{{\sqrt {{{x}_{3}}} \beta }}{{2\pi }}} \right] \\ \left. {\left. { \times \,{\text{cosec}}\frac{{\sqrt {{{x}_{3}}} \beta }}{2} - \frac{{2{{\pi }^{2}}}}{{{{x}_{3}}{{\beta }^{2}}}}} \right\}} \right\}. \\ \end{gathered} $$

The semiclassical action, with allowance for two promoting modes, reduces to an expression of the form

$$\begin{gathered} {{S}_{B}}2\omega _{0}^{2}(a + b)a{{\tau }_{0}} - \frac{2}{\beta }\omega _{0}^{2}{{(a + b)}^{2}}\tau _{0}^{2} \\ - \frac{4}{\beta }\omega _{0}^{4}{{(a + b)}^{2}}\{ {{U}_{1}} + {{U}_{2}}\} , \\ \end{gathered} $$

where

$$\begin{gathered} {{\tau }_{0}} = \frac{1}{{2{{\omega }_{0}}}}{\text{arcsinh}}\left[ {\frac{{b - a}}{{b + a}}\sinh \frac{{{{\omega }_{0}}\beta }}{4}} \right] + \frac{\beta }{4} \\ = \frac{1}{{2{{\omega }_{0}}}}{\text{arcsinh}}\left[ {\frac{{\frac{b}{a} - 1}}{{\frac{b}{a} + 1}}\sinh \frac{{{{\omega }_{0}}\beta }}{4}} \right] + \frac{\beta }{4} \\ \end{gathered} $$

or

$$\tau _{0}^{*} = {{\tau }_{0}}{{\omega }_{0}} = \frac{1}{2}{\text{arcsinh}}\left[ {\frac{{b{\text{*}} - 1}}{{b{\text{*}} + 1}}\sinh \beta {\text{*}}} \right] + \beta {\text{*}};$$
$$\tau _{0}^{*} = \tau {{\omega }_{0}};\quad \beta \text{*} = \frac{{{{\omega }_{0}}\beta }}{4}.$$

Finally, the renormalized expression for the 1D semiclassical instanton action, taking into account two local modes of the medium thermostat, takes the form

$$\begin{gathered} {{{\tilde {S}}}_{{10}}} = \frac{{{{S}_{{10}}}}}{{{{\omega }_{0}}{{a}^{2}}}} = 2(b{\text{*}} + 1)\tau _{0}^{*} - \frac{1}{{2\beta {\text{*}}}}{{(b{\text{*}} + 1)}^{2}}\tau _{0}^{{*2}} \\ - \,\,\frac{{{{{(b{\text{*}} + 1)}}^{2}}}}{{\beta {\text{*}}}}\left\{ {\frac{1}{2}\left[ {{{\beta }_{0}}\omega _{0}^{2}{{{\left( {\frac{{\beta {{\omega }_{0}}}}{4}} \right)}}^{2}}\frac{2}{3} + 4\frac{{\gamma \omega _{0}^{2}{{{\left( {\frac{{\beta {{\omega }_{0}}}}{4}} \right)}}^{2}}}}{{{{\pi }^{2}}}}} \right.} \right. \\ \times \,\,\left[ { - \frac{{4{{\pi }^{2}}}}{{2{{x}_{1}}{{\beta }^{2}}}} - \frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{1}}} \beta }}\cot \left( {\frac{{\sqrt {{{x}_{1}}} \beta }}{{2\pi }}} \right)} \right] + 4\frac{{\varphi \omega _{0}^{2}\beta {{{\text{*}}}^{2}}}}{{{{\pi }^{2}}}} \\ \times \,\,\left[ { - \frac{{4{{\pi }^{2}}}}{{2{{x}_{2}}{{\beta }^{2}}}} - \frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{2}}} \beta }}\cot \left( {\frac{{\sqrt {{{x}_{2}}} \beta }}{{2\pi }}} \right)} \right] \\ \end{gathered} $$
$$\begin{gathered} \left. {_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} + \,\,4\frac{{\Delta \omega _{0}^{2}\beta {{{\text{*}}}^{2}}}}{{{{\pi }^{2}}}}\left[ { - \frac{{4{{\pi }^{2}}}}{{2{{x}_{3}}{{\beta }^{2}}}} - \frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{3}}} \beta }}\cot \left( {\frac{{\sqrt {{{x}_{3}}} \beta }}{{2\pi }}} \right)} \right]} \right] \\ - \,\,\frac{1}{2}\left[ {{{\beta }_{0}}\omega _{0}^{2}{{{\left( {\frac{{\beta {{\omega }_{0}}}}{4}} \right)}}^{2}}\frac{1}{3}\left( {3{{{\left( {\frac{{4\pi {{\tau }_{0}}{{\omega }_{0}}}}{{\beta {{\omega }_{0}}}}} \right)}}^{2}} - \frac{{6{{\pi }^{2}}{{\tau }_{0}}{{\omega }_{0}}4}}{{\beta {{\omega }_{0}}}} + 2{{\pi }^{2}}} \right)} \right. \\ + \,\,\frac{{4\gamma \omega _{0}^{2}{{{\left( {\frac{{\beta {{\omega }_{0}}}}{4}} \right)}}^{2}}}}{{{{\pi }^{2}}}}\left\{ {\frac{{{{\omega }_{0}}{{\pi }^{2}}4}}{{4\sqrt {{{x}_{1}}} \beta {{\omega }_{0}}}}\cos \left[ {\left( {\pi - \frac{{4\pi {{\tau }_{0}}{{\omega }_{0}}}}{{\beta {{\omega }_{0}}}}} \right)\frac{{\sqrt {{{x}_{1}}} 2\beta {{\omega }_{0}}}}{{{{\omega }_{0}}\pi 4}}} \right]} \right. \\ \left. { \times \,\,{\text{cosec}}\frac{{2\sqrt {x1} }}{{{{\omega }_{0}}}}\frac{{{{\beta }_{0}}{{\omega }_{0}}}}{4} + \frac{{\omega _{0}^{2}{{\pi }^{2}}4}}{{8{{x}_{1}}\beta {{\omega }_{0}}}}} \right\} + \frac{{4\phi \omega _{0}^{2}\beta {{{\text{*}}}^{2}}}}{{{{\pi }^{2}}}} \\ \end{gathered} $$
(A.7)
$$\begin{gathered} \times \,\,\left\{ {\frac{{{{\omega }_{0}}{{\pi }^{2}}4}}{{4\sqrt {{{x}_{2}}} \beta {\text{*}}}}} \right.\cos \left[ {\left( {\pi - \frac{{4\pi \tau _{0}^{*}{{\omega }_{0}}}}{{\beta {\text{*}}}}} \right)\frac{{\sqrt {{{x}_{2}}} 2\beta {\text{*}}}}{{{{\omega }_{0}}\pi }}} \right] \\ \,\left. { \times \,\,{\text{cosec}}\frac{{2\sqrt {{{x}_{2}}} }}{{{{\omega }_{0}}}}\beta {\text{*}} + \frac{{\omega _{0}^{2}{{\pi }^{2}}}}{{8{{x}_{{20}}}\beta {{{\text{*}}}^{2}}}}} \right\} + \frac{{4\Delta \omega _{0}^{2}\beta {{{\text{*}}}^{2}}}}{{{{\pi }^{2}}}} \\ \times \,\,\left\{ {\frac{{{{\omega }_{0}}{{\pi }^{2}}4}}{{4\sqrt {{{x}_{3}}} \beta {\text{*}}}}\cos \left[ {\left( {\pi - \frac{{4\pi \tau _{0}^{*}{{\omega }_{0}}}}{{\beta {\text{*}}}}} \right)\frac{{\sqrt {{{x}_{3}}} 2\beta {\text{*}}}}{{{{\omega }_{0}}\pi }}} \right]} \right. \\ \left. {\,\left. { \times \,\,{\text{cosec}}\frac{{2\sqrt {{{x}_{3}}} }}{{{{\omega }_{0}}}}\beta {\text{*}} + \frac{{\omega _{0}^{2}{{\pi }^{2}}}}{{8{{x}_{3}}\beta {{{\text{*}}}^{2}}}}} \right\}} \right]. \\ \end{gathered} $$

Let us proceed to the calculation of the pre-exponential factor taking into account two promoting phonon modes:

$$B = \frac{{2\omega _{0}^{2}{{{(a + b)}}^{2}}}}{{{{{(2\pi \beta )}}^{{\frac{1}{2}}}}}}\frac{{\sum\limits_{n = - \infty }^\infty {\frac{{{{{\sin }}^{2}}{{\nu }_{n}}{{\tau }_{0}}}}{{{{\lambda }_{{0n}}}}}} }}{{{{{\left[ {\sum\limits_{n = - \infty }^\infty {\frac{{\cos 2{{\nu }_{n}}{{\tau }_{0}}}}{{{{\lambda }_{{0n}}}}}} } \right]}}^{{\frac{1}{2}}}}}},$$
(A.8)

where

$${{\lambda }_{{0n}}} = \nu _{n}^{2} + \omega _{0}^{2} + {{\zeta }_{n}},$$
$$\begin{gathered} \sum\limits_{ - \infty }^\infty {\frac{{{{{\sin }}^{2}}{{\nu }_{n}}{{\tau }_{0}} = \frac{1}{2}(1 - \cos 2{{\nu }_{n}}{{\tau }_{0}})}}{{\nu _{n}^{2} + \omega _{0}^{2} + \frac{{\nu _{n}^{2}C_{2}^{2}}}{{\omega _{2}^{2}(\omega _{2}^{2} + \nu _{n}^{2})}} + \frac{{\nu _{n}^{2}C_{3}^{2}}}{{\omega _{3}^{2}(\omega _{3}^{2} + \nu _{n}^{2})}}}}} \\ = \frac{1}{2}\sum\limits_{n = - \infty }^\infty {\frac{{(1 - \cos 2{{\nu }_{n}}{{\tau }_{0}})\omega _{2}^{2}\omega _{3}^{2}(\omega _{2}^{2} + \nu _{n}^{2})(\omega _{3}^{2} + \nu _{n}^{2})}}{{(\omega _{0}^{2} + \nu _{n}^{2})\omega _{2}^{2}\omega _{3}^{2}(\omega _{2}^{2} + \nu _{n}^{2})(\omega _{3}^{2} + \nu _{n}^{2}) + \nu _{n}^{2}C_{2}^{2}\omega _{3}^{2}(\omega _{3}^{2} + \nu _{n}^{2}) + \nu _{2}^{2}C_{3}^{2}\omega _{3}^{2}(\omega _{3}^{2} + \nu _{n}^{2})}}} , \\ \end{gathered} $$
(A.9)
$$x = \nu _{n}^{2} = \frac{1}{2}\sum\limits_{n = - \infty }^\infty {\frac{{(1 - \cos 2{{\nu }_{n}}{{\tau }_{0}})(\omega _{2}^{2} + \nu _{n}^{2})(\omega _{3}^{2} + \nu _{n}^{2})}}{{{{x}^{3}} + A{{x}^{2}} + {{B}_{\omega }}x + C}},} $$

where the notation A = \(\omega _{2}^{2}\) + \(\omega _{3}^{2}\) + \(\omega _{0}^{2}\) + \(\frac{{C_{2}^{2}}}{{\omega _{2}^{2}}}\) + \(\frac{{C_{3}^{2}}}{{\omega _{3}^{2}}}\),

$${{B}_{\omega }} = \omega _{2}^{2}\omega _{3}^{2} + \omega _{0}^{2}(\omega _{2}^{2} + \omega _{3}^{2})\frac{{C_{2}^{2}\omega _{3}^{2}}}{{\omega _{2}^{2}}} + \frac{{C_{3}^{2}\omega _{2}^{2}}}{{\omega _{3}^{2}}},$$
$$C = \omega _{0}^{2}\omega _{2}^{2}\omega _{3}^{2},$$

we also denote

$$Q = \frac{{{{A}^{3}} - 3{{B}_{\omega }}}}{9};\quad R = \frac{{2{{A}^{3}} - 9A{{B}_{\omega }} + 27C}}{{54}};$$
$$S = {{Q}^{3}} - {{R}^{2}};\quad \Phi = \frac{1}{3}\arccos \left( {\frac{R}{{\sqrt {{{Q}^{3}}} }}} \right).$$

At S > 0,

$${{x}_{1}} = - 2\sqrt Q \cos (\Phi ) - \frac{A}{3},$$
$${{x}_{2}} = - 2\sqrt Q \cos \left( {\Phi + \frac{2}{3}\pi } \right) - \frac{A}{3},$$
$${{x}_{3}} = - 2\sqrt Q \cos \left( {\Phi - \frac{2}{3}\pi } \right) - \frac{A}{3}.$$

Let us expand the denominator of relation (A.9):

$$\begin{gathered} \frac{1}{2}\sum\limits_{n = - \infty }^\infty {\frac{{(\omega _{2}^{2} + \nu _{n}^{2})(\omega _{3}^{2} + \nu _{n}^{2})}}{{(\nu _{n}^{2} - {{x}_{1}})(\nu _{n}^{2} - {{x}_{2}})(\nu _{n}^{2} - {{x}_{3}})}}} \\ = \frac{D}{{\nu _{n}^{2} - {{x}_{1}}}} + \frac{E}{{\nu _{n}^{2} - {{x}_{2}}}} + \frac{F}{{\nu _{n}^{2} - {{x}_{3}}}}, \\ \end{gathered} $$
$$F = \frac{{(\omega _{2}^{2} + \omega _{3}^{2} + {{x}_{2}} + {{x}_{3}})[{{x}_{2}}{{x}_{3}}({{x}_{1}} + {{x}_{3}}) - {{x}_{1}}{{x}_{3}}({{x}_{2}} + {{x}_{3}})] + ({{x}_{2}} - {{x}_{1}})[({{x}_{2}} + {{x}_{2}})\omega _{2}^{2}\omega _{3}^{2} + {{x}_{2}}{{x}_{3}}(\omega _{2}^{2} + \omega _{3}^{2})]}}{{({{x}_{2}} - {{x}_{1}})[{{x}_{1}}{{x}_{2}}({{x}_{2}} + {{x}_{3}}) - {{x}_{2}}{{x}_{3}}({{x}_{1}} + {{x}_{2}})] - ({{x}_{1}} - {{x}_{3}})[{{x}_{2}}{{x}_{3}}({{x}_{1}} + {{x}_{3}}) - {{x}_{1}}{{x}_{3}}({{x}_{2}} + {{x}_{3}})]}},$$
$$E = \frac{{\omega _{2}^{2} + \omega _{3}^{2} + {{x}_{2}} + {{x}_{3}} + F({{x}_{1}} - {{x}_{3}})}}{{{{x}_{2}} - {{x}_{1}}}};$$
$$D = - \frac{{\omega _{2}^{2} + \omega _{3}^{2} + E({{x}_{1}} + {{x}_{3}}) + F({{x}_{1}} + {{x}_{2}})}}{{{{x}_{2}} + {{x}_{3}}}},$$
$$\begin{gathered} \frac{1}{2}\sum\limits_{n = - \infty }^\infty {\frac{D}{{\nu _{n}^{2} - {{x}_{1}}}}} = \frac{D}{2}\sum\limits_{n = - \infty }^\infty {\frac{1}{{\frac{{4{{\pi }^{2}}{{n}^{2}}}}{{{{\beta }^{2}}}} - {{x}_{1}}}}} = \frac{1}{2}\frac{{D{{\beta }^{2}}}}{{4{{\pi }^{2}}}}\sum\limits_{n = - \infty }^\infty {\frac{1}{{{{n}^{2}} - \frac{{{{x}_{1}}{{\beta }^{2}}}}{{4{{\pi }^{2}}}}}}} \\ = \frac{1}{2}\frac{{D{{\beta }^{2}}}}{{4{{\pi }^{2}}}}\left[ { - \frac{{4{{\pi }^{2}}}}{{{{x}_{1}}{{\beta }^{2}}}} + 2\sum\limits_{n = - \infty }^\infty {\frac{1}{{{{n}^{2}} - \frac{{{{x}_{1}}{{\beta }^{2}}}}{{4{{\pi }^{2}}}}}}} } \right] \\ \end{gathered} $$

(at x1 > 0):

$$ = \frac{1}{2}\frac{{D{{\beta }^{2}}}}{{4{{\pi }^{2}}}}\left[ { - \frac{{4{{\pi }^{2}}}}{{{{x}_{1}}{{\beta }^{2}}}} + 2\left\{ { - \frac{{2{{\pi }^{2}}}}{{{{x}_{{10}}}{{\beta }^{2}}}} - \frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{1}}} \beta }}\cot \frac{{\sqrt {{{x}_{1}}} \beta }}{2}} \right\}} \right].$$

The amount containing cos2νnτ0 yields in this case

$$\begin{gathered} = - \frac{1}{2}\frac{{D{{\beta }^{2}}}}{{4{{\pi }^{2}}}}\left[ { - \frac{{4{{\pi }^{2}}}}{{{{x}_{1}}{{\beta }^{2}}}} + 2\left\{ { - \frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{1}}} \beta }}\cos \left[ {\left( {\pi - \frac{{4\pi {{\tau }_{0}}}}{\beta }} \right)} \right.} \right.} \right. \\ \left. {\left. {\left. { \times \,\,\frac{{\sqrt {{{x}_{1}}} \beta }}{{2\pi }}} \right]{\text{cosec}}\frac{{\sqrt {{{x}_{1}}} \beta }}{2} + \frac{{2{{\pi }^{2}}}}{{{{x}_{1}}\beta }}} \right\}} \right]. \\ \end{gathered} $$
(A.10)

Eventually, the dimensionless preexponential factor is determined by sums of two types:

$$\tilde {B} = \frac{B}{{{{a}^{2}}{{\omega }^{{\frac{2}{3}}}}}} = \frac{{2\omega _{0}^{2}{{{\left( {\frac{b}{a} + 1} \right)}}^{2}}}}{{{{{(2\pi \beta )}}^{{\frac{1}{2}}}}}}\frac{{{{V}_{1}}}}{{{{{({{V}_{2}})}}^{{\frac{1}{2}}}}}},$$
$$\begin{gathered} {{V}_{1}} = \sum\limits_{n = - \infty }^\infty \frac{{{\text{si}}{{{\text{n}}}^{2}}{{\nu }_{n}}{{\tau }_{0}}}}{{{{\lambda }_{{0n}}}}} \\ = \frac{1}{2}\frac{{D{{\beta }^{2}}}}{{4{{\pi }^{2}}}}\left[ { - \frac{{4{{\pi }^{2}}}}{{{{x}_{1}}{{\beta }^{2}}}} + 2\left\{ { - \frac{{2{{\pi }^{2}}}}{{{{x}_{{10}}}{{\beta }^{2}}}} - \frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{1}}} \beta }}{\text{cot}}\frac{{\sqrt {{{x}_{1}}\beta } }}{2}} \right\}} \right] \\ \end{gathered} $$
$$\begin{gathered} + \,\,\frac{1}{2}\frac{{E{{\beta }^{2}}}}{{4{{\pi }^{2}}}}\left[ { - \frac{{4{{\pi }^{2}}}}{{{{x}_{2}}{{\beta }^{2}}}} + 2\left\{ { - \frac{{2{{\pi }^{2}}}}{{{{x}_{{20}}}{{\beta }^{2}}}} - \frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{2}}} \beta }}\cot \frac{{\sqrt {{{x}_{2}}} \beta }}{2}} \right\}} \right] \\ + \,\,\frac{1}{2}\frac{{F{{\beta }^{2}}}}{{4{{\pi }^{2}}}}\left[ { - \frac{{4{{\pi }^{2}}}}{{{{x}_{3}}{{\beta }^{2}}}} + 2\left\{ { - \frac{{2{{\pi }^{2}}}}{{{{x}_{{30}}}{{\beta }^{2}}}} - \frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{3}}} \beta }}\cot \frac{{\sqrt {{{x}_{3}}} \beta }}{2}} \right\}} \right] \\ - \,\,\frac{1}{2}\frac{{D{{\beta }^{2}}}}{{4{{\pi }^{2}}}}\left[ { - \frac{{4{{\pi }^{2}}}}{{{{x}_{1}}{{\beta }^{2}}}} + 2\left\{ { - \frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{1}}} \beta }}\cos \left[ {\left( {\pi - \frac{{4\pi {{\tau }_{0}}}}{\beta }} \right)\frac{{\sqrt {{{x}_{1}}} \beta }}{{2\pi }}} \right]} \right.} \right. \\ \left. {\left. { \times \,\,{\text{cosec}}\frac{{\sqrt {{{x}_{1}}} \beta }}{2} + \frac{{2{{\pi }^{2}}}}{{{{x}_{1}}{{\beta }^{2}}}}} \right\}} \right] \\ \end{gathered} $$
$$\begin{gathered} - \,\,\frac{1}{2}\frac{{E{{\beta }^{2}}}}{{4{{\pi }^{2}}}}\left[ { - \frac{{4{{\pi }^{2}}}}{{{{x}_{2}}{{\beta }^{2}}}} + 2\left\{ { - \frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{2}}} \beta }}\cos \left[ {\left( {\pi - \frac{{4\pi {{\tau }_{0}}}}{\beta }} \right)\frac{{\sqrt {{{x}_{2}}} \beta }}{{2\pi }}} \right]} \right.} \right. \\ \left. {\left. { \times \,\,{\text{cosec}}\frac{{\sqrt {{{x}_{2}}} \beta }}{2} + \frac{{2{{\pi }^{2}}}}{{{{x}_{2}}{{\beta }^{2}}}}} \right\}} \right] - \frac{1}{2}\frac{{F{{\beta }^{2}}}}{{4{{\pi }^{2}}}}\left[ { - \frac{{4{{\pi }^{2}}}}{{{{x}_{3}}{{\beta }^{2}}}}} \right. \\ + \,\,2\left\{ { - \frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{3}}} \beta }}} \right.\cos \left[ {\left( {\pi - \frac{{4\pi {{\tau }_{0}}}}{\beta }} \right)\frac{{\sqrt {{{x}_{3}}} \beta }}{{2\pi }}} \right] \\ \left. {\left. { \times \,\,{\text{cosec}}\frac{{\sqrt {{{x}_{3}}} \beta }}{2} + \frac{{2{{\pi }^{2}}}}{{{{x}_{3}}{{\beta }^{2}}}}} \right\}} \right]; \\ \end{gathered} $$
$$\begin{gathered} {{V}_{2}} = \sum\limits_{n = - \infty }^\infty \frac{{{\text{cos}}2{{\nu }_{n}}{{\tau }_{0}}}}{{{{\lambda }_{{0n}}}}} \\ = \frac{{D{{\beta }^{2}}}}{{4{{\pi }^{2}}}}\left[ { - \frac{{4{{\pi }^{2}}}}{{{{x}_{1}}{{\beta }^{2}}}} + 2\left\{ { - \frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{1}}} \beta }}{\text{cos}}\left[ {\left( {\pi - \frac{{4\pi {{\tau }_{0}}}}{\beta }} \right)\frac{{\sqrt {{{x}_{1}}} \beta }}{{2\pi }}} \right]} \right.} \right. \\ \left. {\left. { \times \,{\text{cosec}}\frac{{\sqrt {{{x}_{1}}} \beta }}{2} + \frac{{2{{\pi }^{2}}}}{{{{x}_{1}}{{\beta }^{2}}}}} \right\}} \right] + \frac{{E{{\beta }^{2}}}}{{4{{\pi }^{2}}}}\left[ { - \frac{{4{{\pi }^{2}}}}{{{{x}_{2}}{{\beta }^{2}}}}} \right. \\ \end{gathered} $$
$$\begin{gathered} + 2\left\{ { - \frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{2}}} \beta }}} \right.\cos \left[ {\left( {\pi - \frac{{4\pi {{\tau }_{0}}}}{\beta }} \right)\frac{{\sqrt {{{x}_{2}}} \beta }}{{2\pi }}} \right] \\ \left. {\left. { \times \,{\text{cosec}}\frac{{\sqrt {{{x}_{2}}} \beta }}{2} + \frac{{2{{\pi }^{2}}}}{{{{x}_{2}}{{\beta }^{2}}}}} \right\}} \right] \\ + \frac{{F{{\beta }^{2}}}}{{4{{\pi }^{2}}}}\left[ { - \frac{{4{{\pi }^{2}}}}{{{{x}_{3}}{{\beta }^{2}}}} + 2\left\{ { - \frac{{{{\pi }^{2}}}}{{\sqrt {{{x}_{3}}} \beta }}} \right.} \right. \\ \left. {\left. { \times \cos \left[ {\left( {\pi - \frac{{4\pi {{\tau }_{0}}}}{\beta }} \right)\frac{{\sqrt {{{x}_{3}}} \beta }}{{2\pi }}} \right]{\text{cosec}}\frac{{\sqrt {{{x}_{3}}} \beta }}{2} + \frac{{2{{\pi }^{2}}}}{{{{x}_{3}}{{\beta }^{2}}}}} \right\}} \right]. \\ \end{gathered} $$
(A.11)

As a result, the expressions for the probability of 1D tunneling transfer:

$$\Gamma = B\exp ( - S).$$
(A.12)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, M.B., Krevchik, V.D., Filatov, D.O. et al. Dissipative Tunneling of Electrons in Vertically Coupled Double Asymmetric InAs/GaAs(001) Quantum Dots. Tech. Phys. 67, 115–125 (2022). https://doi.org/10.1134/S1063784222010145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222010145

Keywords:

Navigation