Skip to main content
Log in

Nonlinear Signal Suppression in a Traveling-Wave Tube

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The results of experimental and theoretical studies of the passage of monochromatic and pulse-modulated microwave signals through the traveling-wave tube operating in the mode of nonlinear suppression are presented. It is established that, dependent on the value of the accelerating voltage and beam current, the tube may operate either as a saturable absorber or as power limiter. In the first case, the maximum level of signal suppression corresponding to the Kompfner dip occurs in the linear mode, while it occurs in the nonlinear mode, under a certain power of the input signal, in the second case. It is shown that, in the case of maximum suppression a short pulse is generated at the front of the radio pulses. In the mode of a nonlinear Kompfner dip the duration of such pulse decreases as the power of the input radio pulse increases. The calculation results obtained by the nonlinear transient theory of traveling-wave tube are in good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. In Fig. 2a, the results were obtained for \({{P}_{{\text{p}}}} > {{P}_{{{\text{th}}0}}}\), because, for \({{P}_{{\text{p}}}} \leqslant {{P}_{{{\text{th}}0}}}\), the radio pulses passing through the TWT suppressor and being under a strong weakening are not registered on the oscilloscope screen. However, it follows from the results given in Fig. 1c that, at \({{P}_{{\text{p}}}} = - 20\) dBm, the level of signal suppression still remains close to the level of the maximum Kompfner suppression.

  2. This condition is satisfied in the working mode of the TWT at consideration.

REFERENCES

  1. D. I. Trubetskov and G. M. Vdovina, Phys.-Usp. 63 (5), 503 (2020). https://doi.org/10.3367/UFNe.2019.12.038707

    Article  Google Scholar 

  2. R. Kompfner, J. Br. Inst. Radio Eng. 10 (8–9), 283 (1950).

    Google Scholar 

  3. H. R. Johnnson, PIRE 7, 874 (1955).

    Google Scholar 

  4. V. N. Shevchik and D. I. Trubetskov, Analytical Calculation Methods in Microwave Electronics (Sovetskoe Radio, Moscow, 1970) [in Russian].

    Google Scholar 

  5. D. A. Watkins and A. E. Siegman, J. Appl. Phys. 24 (7), 917 (1953). https://doi.org/10.1063/1.1721402

    Article  ADS  Google Scholar 

  6. R. W. Gould, IRE Trans. Electron Devices 2 (4), 37 (1955).

    Article  ADS  Google Scholar 

  7. A. Ashkin, W. H. Louisell, and C. F. Quate, J. Electron. Control 7, 1 (1959).

    Article  Google Scholar 

  8. B. S. Dmitriev and Yu. D. Zharkov, Proc. Electron. Sect. of the 21st All-Union Sci. Session of the Sci.-Tech. Soc. of Radio Eng. and Electron. (Moscow, 1965), p. 37.

  9. B. S. Dmitriev and Yu. D. Zharkov, in Ultrahigh Frequency Electronics Issues (Saratov Univ., Saratov, 1966), Iss. 2, p. 3 [in Russian].

  10. Yu. A. Kalinin, Yu. A. Grigor’ev, and V. K. Semenov, Obzory Elektron. Tekh., Ser. 1: Elektron. SVCh 2 (1329), 48 (1988).

    Google Scholar 

  11. N. S. Ginzburg, E. B. Abubakirov, M. N. Vilkov, I. V. Zotova, and A. S. Sergeev, Tech. Phys. Lett. 43, 842 (2017). https://doi.org/10.1134/S1063785017090164

    Article  ADS  Google Scholar 

  12. N. S. Ginzburg, G. G. Denisov, M. N. Vilkov, A. S. Sergeev, I. V. Zotova, S. V. Samsonov, and S. V. Mishakin, Phys. Plasmas 24 (2), 023103 (2017). https://doi.org/10.1063/1.4975084

  13. N. S. Ginzburg, E. B. Abubakirov, M. N. Vilkov, I. V. Zotova, and A. S. Sergeev, Tech. Phys. 63 (8), 1205 (2018). https://doi.org/10.1134/S1063784218080078

    Article  Google Scholar 

  14. S. V. Grishin, B. S. Dmitriev, O. I. Moskalenko, V. N. Skorokhodov, and Yu. P. Sharaevskii, Phys. Rev. E 98 (2), 022209 (2018). https://doi.org/10.1103/PhysRevE.98.022209

  15. I. S. Gonorovskii, Radio Circuits and Signals (Sovetskoe Radio, Moscow, 1971) [in Russian].

    Google Scholar 

  16. Yu. P. Bliokh, M. G. Lyubarskii, V. O. Podobinskii, and Ya. B. Fainberg, Plasma Phys. Rep. 20, 648 (1994).

    ADS  Google Scholar 

  17. Yu. P. Bliokh, M. G. Liubarskii, V. O. Podobinskii, Ya.  B. Fainberg, G. S. Nusinovich, S. Kobayashi, Y. Carmel, and V. L. Granatstein, Phys. Plasmas 5 (11), 4061 (1998). https://doi.org/10.1063/1.873128

    Article  ADS  Google Scholar 

  18. N. M. Ryskin, V. N. Titov, S. T. Han, J. K. So, K. H. Jang, and G. S. Park, Phys. Plasmas 11 (3), 1194 (2004). https://doi.org/10.1063/1.1640622

    Article  ADS  Google Scholar 

  19. N. S. Ginzburg, S. P. Kuznetsov, and T. N. Fedoseeva, Izv. Vyssh. Uchebn. Zaved., Fiz. 21 (7), 1037 (1978).

    Google Scholar 

  20. B. P. Bezruchko, L. V. Bulgakova, S. P. Kuznetsov, and D. I. Trubetskov, in Lectures on Microwave Electronics and Radiophysics (5th Winter School-Seminar of Engineers) (Saratov Univ., Saratov, 1980), vol. 5, p. 25.

    Google Scholar 

  21. A. M. Katz, E. M. Il’ina, and I. A. Man’kin, Nonlinear Phenomena in O-Type Microwave Devices with Long-Term Interaction (Sovetskoe Radio, Moscow, 1975) [in Russian].

    Google Scholar 

  22. D. Chernin, T. M. Antonsen, and B. Levush, IEEE Trans. Electron Devices 46 (7), 1472 (1999). https://doi.org/10.1109/16.772493

    Article  ADS  Google Scholar 

  23. A. G. Rozhnev, N. M. Ryskin, D. V. Sokolov, D. I. Trubetskov, A. S. Pobedonostsev, S. A. Rumyantsev, and V. B. Khomitch, in Proc. 5th IEEE Int. Vacuum Electronics Conf. (IVEC) (Monterey, 2004), p. 144. https://doi.org/10.1109/IVELEC.2004.1316240

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 18-02-00666.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Grishin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishin, S.V., Dmitriev, B.S., Razuvaev, F.P. et al. Nonlinear Signal Suppression in a Traveling-Wave Tube. Tech. Phys. 67, 69–79 (2022). https://doi.org/10.1134/S1063784222010078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222010078

Keywords:

Navigation