Skip to main content
Log in

Calculation of Nuclear Stopping in the Semiclassical Approximation

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The results of calculating nuclear stopping in the semiclassical approximation for the H–Be, H–C, H–W, O–C, O–Be, and O–Al systems are presented. It was found that, in the presence of a well in the interatomic-interaction potential, an additional maximum appears in the dependence of the nuclear stopping on the energy of the bombarding particles. When using the universal potential without a well, this feature is absent. It is shown that, by means of scaling, the data obtained for systems with hydrogen are recalculated for collisions with the participation of D and T hydrogen isotopes. The results obtained are in good agreement with classical calculations, which is explained by the fact that large scattering angles make the main contribution to the nuclear stopping and the applicability criterion changes to the condition that angular momentum \(\ell \) ≫ 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. H. Grahmann and S. Kalbitzer, Nucl. Instrum. Methods 132, 119 (1976). https://doi.org/10.1016/0029-554X(76)90720-5

    Article  ADS  Google Scholar 

  2. D. Jedrejcic and U. Greife, Nucl. Instrum. Methods Phys. Res., Sect. B 428, 1 (2018). https://doi.org/10.1016/j.nimb.2018.04.039

    Article  Google Scholar 

  3. R. Shnidman, R. M. Tapphorn, and K. N. Geller, Appl. Phys. Lett. 22, 551 (1973). https://doi.org/10.1063/1.1654504

    Article  ADS  Google Scholar 

  4. L.G. Glazov and P. Sigmund, Nucl. Instrum. Methods Phys. Res., Sect. B 207, 240 (2003). https://doi.org/10.1016/S0168-583X(03)00461-0

    Article  Google Scholar 

  5. Th. Krist, P. Mertens, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B 2, 177 (1984). https://doi.org/10.1016/0168-583X(84)90183-6

    Article  Google Scholar 

  6. A. N. Zinov’ev and P. Yu. Babenko, Tech. Phys. Lett. 46, 909 (2020). https://doi.org/10.1134/S106378502009031X

    Article  ADS  Google Scholar 

  7. N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions (Oxford Univ. Press, Oxford, 1965).

    MATH  Google Scholar 

  8. H. S. W. Massey and C. B. O. Mohr, Proc. R. Soc. London, Ser. A 141, 434 (1933).

    Article  ADS  Google Scholar 

  9. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, London, 1965).

    MATH  Google Scholar 

  10. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985), Vol. 1.

    Google Scholar 

  11. A. N. Zinoviev and K. Nordlund, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 511 (2017). https://doi.org/10.1016/j.nimb.2017.03.047

    Article  Google Scholar 

  12. Y. R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, Boca Raton, 2007).

    Book  Google Scholar 

  13. B. Darwent, Bond Dissociation Energies in Simple Molecules (U.S. National Bureau of Standards, 1970), Iss. 31.

  14. A. A. Radzig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Springer, Berlin, 1985). https://doi.org/10.1007/978-3-642-82048-9

    Book  Google Scholar 

  15. B. P. Nikol’skii, Handbook of Chemist (Khimiya, Leningrad, 1966), Vol. 1 [in Russian].

    Google Scholar 

  16. NIST data base. https://webbook.nist.gov/chemistry/

  17. J. Linchard, V. Nielsen, and M. Scharff, Mat.-Fys. Medd. – K. Dan. Vidensk. Selsk. 36, 1 (1968).

    Google Scholar 

Download references

Funding

This work was carried out within the framework of a state assignment of the Ministry of Education and Science of the Russian Federation to the Ioffe Institute, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Yu. Babenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

APPENDIX

APPENDIX

Derivation of the Formula for the Transport Section Q tr

$${{Q}_{{{\text{tr}}}}} = 2\pi \mathop \smallint \limits_0^\pi d\theta {\text{sin}}\theta \left( {1 - {\text{cos}}\theta } \right){{\left| {f\left( \theta \right)} \right|}^{2}}.$$
(A1)

Here, θ is the scattering angle in the center of mass system and f(θ) is the scattering amplitude, which, without any assumptions and simplifications, can be written as

$$f = \frac{1}{k}\mathop \sum \limits_{\ell = 0}^\infty {{e}^{{i{{\delta }_{\ell }}}}}\left( {2\ell + 1} \right){{P}_{\ell }}\left( {{\text{cos}}\theta } \right){\text{sin}}{{\delta }_{\ell }},$$
(A2)

where \({{\delta }_{\ell }}\) is the scattering phase and \({{\delta }_{\ell }}\) in the semiclassical approximation is determined by the expression

$$\begin{gathered} {{Q}_{d}} = 2\pi \mathop \smallint \limits_0^\pi d\theta {\text{sin}}\theta \left( {1 - {\text{cos}}\theta } \right) \\ \times \,\,\left| {\frac{1}{{4{{k}^{2}}}}\left( {\mathop \sum \limits_{l = 0}^\infty {{e}^{{i{{\delta }_{l}}}}}\left( {2l + 1} \right){{P}_{l}}\left( {{\text{cos}}\theta } \right){\text{sin}}{{\delta }_{l}}} \right)} \right. \\ \left. { \times \,\,\left( {\mathop \sum \limits_{m = 0}^\infty {{e}^{{i{{\delta }_{m}}}}}\left( {2m + 1} \right){{P}_{m}}\left( {{\text{cos}}\theta } \right){\text{sin}}{{\delta }_{m}}} \right)} \right|. \\ \end{gathered} $$
(A3)

For a term with unity, we obtain a term corresponding to the elastic-scattering cross section. For a member with cosθ, we use the properties of the Legendre polynomials:

$${\text{cos}}\theta {{P}_{l}}\left( {{\text{cos}}\theta } \right) = \frac{{\left( {l + 1} \right){{P}_{{l + 1}}}\left( {{\text{cos}}\theta } \right)}}{{2l + 1}} + \frac{{l{{P}_{{l - 1}}}\left( {{\text{cos}}\theta } \right)}}{{2l + 1}}.$$
(A4)

In the product of two sums, due to the orthogonality of the Legendre polynomials in the sum over \(\ell \), there will be contributions from terms with m = \(\ell \) – 1 and m = \(\ell \) + 1.

Consider the term with m = \(\ell \) – 1.

$$\begin{gathered} \left( {2l - 1} \right){\text{cos}}\theta {{P}_{{l - 1}}}\left( {{\text{cos}}\theta } \right) \\ = \left( l \right){{P}_{l}}\left( {{\text{cos}}\theta } \right) + \left( {l - 1} \right){{P}_{{l - 2}}}\left( {{\text{cos}}\theta } \right). \\ \end{gathered} $$
(A5)

Consider the term with m = \(\ell \) + 1.

$$\begin{gathered} \left( {2l + 3} \right){\text{cos}}\theta {{P}_{{l + 1}}}\left( {{\text{cos}}\theta } \right) \\ = \left( {l + 2} \right){{P}_{{l + 2}}}\left( {{\text{cos}}\theta } \right) + \left( {l + 1} \right){{P}_{l}}\left( {{\text{cos}}\theta } \right). \\ \end{gathered} $$
(A6)

If we take the integral, then the terms with the index \(\ell \) and terms with the indices \(\ell \) – 2 and \(\ell \) + 2 contribute to the corresponding terms of the sum when \(\ell \) = \(\ell \) – 2 and \(\ell \) = \(\ell \) + 2.

Let us rewrite the sum:

$$\begin{gathered} {{Q}_{d}} = \frac{{4\pi }}{{{{k}^{2}}}}\mathop \sum \limits_{l = 0}^\infty \left( {2l + 1} \right){\text{si}}{{{\text{n}}}^{2}}{{\delta }_{l}} \\ - \,2\pi \frac{1}{{{{k}^{2}}}}\mathop \smallint \limits_0^\pi d\theta {\text{sin}}\theta \left| {\left( {\mathop \sum \limits_{l = 0}^\infty {{e}^{{i{{\delta }_{l}}}}}\left( {2l + 1} \right){{P}_{l}}\left( {{\text{cos}}\theta } \right){\text{sin}}{{\delta }_{l}}} \right)} \right.~ \\ \times \,((l){{P}_{l}}({\text{cos}}\theta ){\text{sin}}{{\delta }_{{l - 1}}}{{e}^{{ - i{{\delta }_{{l - 1}}}}}} \\ \left. {{{\,}_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{}}}}}}}}}}}}}}}}}}}}}}}}} + \,(l + 1){{P}_{l}}({\text{cos}}\theta ){\text{sin}}{{\delta }_{{l + 1}}}{{e}^{{ - i{{\delta }_{{l + 1}}}}}})} \right|. \\ \end{gathered} $$
(A7)

Given the normalization of the Legendre polynomials,

$$\mathop \smallint \limits_0^\pi d\theta {\text{sin}}\theta {{P}_{l}}\left( {{\text{cos}}\theta } \right){{P}_{l}}\left( {{\text{cos}}\theta } \right) = \frac{2}{{2l + 1}},$$
(A8)

we obtain

$$\begin{gathered} {{Q}_{d}} = \frac{{4\pi }}{{{{k}^{2}}}}\mathop \sum \limits_{l = 0}^\infty \left( {2l + 1} \right){\text{si}}{{{\text{n}}}^{2}}{{\delta }_{l}} \\ - \,\,\frac{{4\pi }}{{{{k}^{2}}}}\left| {\mathop \sum \limits_{l = 0}^\infty ({\text{lsin}}{{\delta }_{l}}{{\sin}}{{\delta }_{{l - 1}}}{{e}^{{i\left( {{{\delta }_{l}} - {{\delta }_{{l - 1}}}} \right)}}}} \right. \\ \left. {_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{}}}}}}}}}}}}}}}}}}}}}}}}}}}} + \,\,\left( {l + 1} \right){\text{sin}}{{\delta }_{l}}{{\sin}}{{\delta }_{{l + 1}}}{{e}^{{i\left( {{{\delta }_{l}} - {{\delta }_{{l + 1}}}} \right)}}})~} \right|. \\ \end{gathered} $$
(A9)

At \(\ell \) = 0, the term in the second sum does not contribute. Shifting the summation index, we obtain

$$\begin{gathered} {{Q}_{d}} = \frac{{4\pi }}{{{{k}^{2}}}}\mathop \sum \limits_{l = 0}^\infty \left( {2l + 1} \right){\text{si}}{{{\text{n}}}^{2}}{{\delta }_{l}} \\ - \,\,\frac{{4\pi }}{{{{k}^{2}}}}\left| {\mathop \sum \limits_{l = 0}^\infty (l\, + \,1)\,{\text{sin}}{{\delta }_{{l + 1}}}\,{\text{sin}}{{\delta }_{l}}({{e}^{{i({{\delta }_{{l + 1}}} - {{\delta }_{{l - 1}}})}}}\, + \,{{e}^{{i({{\delta }_{l}} - {{\delta }_{{l + 1}}})}}})} \right|. \\ \end{gathered} $$
(A10)

Splitting the first sum into two sums with weights \(\ell \) and \(\ell \) + 1 and shifting the summation in the first term by 1, we have

$$\begin{gathered} {{Q}_{d}} = \frac{{4\pi }}{{{{k}^{2}}}}\mathop \sum \limits_{l = 0}^\infty \left( {l + 1} \right)({\text{si}}{{{\text{n}}}^{2}}{{\delta }_{l}} + {\text{si}}{{{\text{n}}}^{2}}{{\delta }_{{l + 1}}}) \\ - \,\,\frac{{4\pi }}{{{{k}^{2}}}}\left| {\mathop \sum \limits_{l = 0}^\infty \left( {l + 1} \right){\text{sin}}{{\delta }_{{l + 1}}}{\text{sin}}{{\delta }_{l}}2{\text{cos}}\left( {{{\delta }_{{l + 1}}} - {{\delta }_{l}}} \right)} \right|. \\ \end{gathered} $$
(A11)

Combining the amounts, we obtain

$$\begin{gathered} {{Q}_{d}} = \frac{{4\pi }}{{{{k}^{2}}}}\mathop \sum \limits_{l = 0}^\infty \left( {l + 1} \right)\{ {\text{si}}{{{\text{n}}}^{2}}{{\delta }_{l}} + {\text{si}}{{{\text{n}}}^{2}}{{\delta }_{{l + 1}}} \\ \, - 2{\text{sin}}{{\delta }_{{l + 1}}}{\text{sin}}{{\delta }_{l}}\left( {{\text{cos}}{{\delta }_{{l + 1}}}{\text{cos}}{{\delta }_{l}} + {\text{sin}}{{{{\delta }}}_{{l + 1}}}{\text{sin}}{{\delta }_{l}}} \right)\} ~ \\ \end{gathered} $$
(A12)

or

$$\begin{gathered} {{Q}_{d}} = \frac{{4\pi }}{{{{k}^{2}}}}\mathop \sum \limits_{l = 0}^\infty (l + 1)\{ {\text{si}}{{{\text{n}}}^{2}}{{\delta }_{l}}{\text{co}}{{{\text{s}}}^{2}}{{\delta }_{{l + 1}}} \\ - {\kern 1pt} \,\,2{\text{sin}}{{\delta }_{{l + 1}}}\,{\text{sin}}{{\delta }_{l}}\,{\text{cos}}{{\delta }_{{l + 1}}}\,{\text{cos}}{{\delta }_{l}}\, + \,{\text{si}}{{{\text{n}}}^{2}}{{\delta }_{{l + 1}}}\,{\text{co}}{{{\text{s}}}^{2}}{{\delta }_{l}}\} . \\ \end{gathered} $$
(A13)

Having carried out trigonometric transformations, we obtain the Mott–Massey formula [7]:

$${{Q}_{d}} = \frac{{4\pi }}{{{{k}^{2}}}}\mathop \sum \limits_{l = 0}^\infty \left( {l + 1} \right){\text{si}}{{{\text{n}}}^{2}}\left( {{{\delta }_{l}} - {{\delta }_{{l + 1}}}} \right).$$
(A14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babenko, P.Y., Zinoviev, A.N. Calculation of Nuclear Stopping in the Semiclassical Approximation. Tech. Phys. 67, 1–6 (2022). https://doi.org/10.1134/S1063784222010029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222010029

Keywords:

Navigation