Skip to main content
Log in

Tribological Studies of α-β-Ga2O3 Layers Paired with a Sapphire Counterface

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The wear resistance of epitaxial layers of α- and β-polymorphs of gallium oxide grown on sapphire substrates has been considered. This is one of the first studies of the tribological properties of a promising wideband semiconductor crystal. As a result of tribotests conducted with the participation of a sapphire counterface in the process of dry friction in air, it has been shown that the layers of a metastable α-Ga2O3 are more resistant to abrasion than the layers of the thermostable β-phase. At the same time, the obtained values of the wear coefficients allow us to attribute both polymorphs to wear-resistant materials and especially α-Ga2O3 with a corundum structure. In addition, α- and β-Ga2O3 demonstrate extremely low values of friction coefficients: lower than those of sapphire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. Total wear, being a standard term, implies that the studied layer is completely destroyed (in this case, up to the substrate), but fragmentarily, that is, the layer is not absent over the entire area.

REFERENCES

  1. E. O. Jonson, RCA Rev. 26, 163 (1965).

  2. M. N. Yoder, IEEE Trans. Electron. Dev. 43, 1633 (1996).

    Article  ADS  Google Scholar 

  3. A. K. Battu and C. C. Ramana, Adv. Eng. Mater. 20, 1701033 (2018).

    Article  Google Scholar 

  4. A. S. Grashchenko, S. A. Kukushkin, V. I. Nikolaev, A. V. Osipov, E. V. Osipova, and I. P. Soshnikov, Phys. Solid State 60 (5), 852 (2018). https://doi.org/10.1134/S1063783418050104

    Article  ADS  Google Scholar 

  5. V. I. Nikolaeva, A. V. Chikiryaka, L. I. Guzilova, and A. I. Pechnikov, Tech. Phys. Lett. 45 (11), 1114 (2019). https://doi.org/10.1134/S1063785019110117

    Article  ADS  Google Scholar 

  6. L. I. Guzilova, A. S. Grashchenko, A. I. Pechnikov, V. N. Maslov, D. V. Zav’yalov, V. L. Abdrachmanov, A. E. Romanov, and V. I. Nikolaev, Fiz. Mekh. Mater. 29 (2), 166 (2016).

    Google Scholar 

  7. S. I. Stepanov, V. I. Nikolaev, V. E. Bougrov, and A. E. Romanov, Rev. Adv. Mater. Sci. 44, 63 (2016).

    Google Scholar 

  8. R. Roy, V. G. Hill, and E. F. Osborn, J. Am. Chem. Soc. 74, 719 (1952).

    Article  Google Scholar 

  9. E. G. Villora, S. Arjoca, K. Shimamura, D. Inomata, and K. Aoki, Proc. SPIE 8987, 89871U (2017).

    Google Scholar 

  10. G. Zeng, C. Tan, N. Tansu, and B. A. Krick, Appl. Phys. Lett. 109, 051602 (2016).

    Article  ADS  Google Scholar 

  11. H. Mishina, NASA Tech. Memorandum 83779: The Friction Behavior of Semiconductors Si and GaAs in Contact with Pure Metals (Lewis Res. Center, Cleveland, 1985).

  12. D. E. Kim and N. P. Suh, Wear 162, 873 (1993).

    Article  Google Scholar 

  13. C. G. Goetzel, J. B. Rittenhouse, and J. B. Singletary, Space Materials Handbook, 2nd ed. (Addison–Wesley, New York, 1965).

  14. F. Pape, H.-H. Gatzen, and G. Poll, Tribol. Online 11 (5), 547 (2016).

    Article  Google Scholar 

  15. M. Fallqvist, M. Olsson, and S. Ruppi, Surf. Coat. Technol. 202, 837 (2007).

    Article  Google Scholar 

  16. P. N. Butenko, L. I. Guzilova, A. V. Chikiryaka, A. I. Pechnikov, A. S. Grashchenko, A. O. Pozdnyakov, and V. I. Nikolaev, Mater. Phys. Mech. 47 (1), 52 (2021).

    Google Scholar 

  17. V. I. Nikolaev, A. I. Pechnikov, S. I. Stepanov, Sh. Sh. Sharofidinov, A. A. Golovatenko, I. P. Nikitina, A. N. Smirnov, V. E. Bugrov, A. E. Romanov, P. N. Brunkov, and D. A. Kirilenko, Semiconductors 50 (7), 980 (2016).

    Article  ADS  Google Scholar 

  18. Y. Oshima, E. G. Villora, and K. Shimamura, in Handbook of Solid State Chemistry, Vol. 2: Synthesis, Ed. by R. Dronskowski, S. Kikkawa, and A. Stein (Wiley, Weinheim, 2017). http://www.gbv.de/dms/tib-ub-hannover/1000907244.pdf.

  19. A. I. Pechnikov, S. I. Stepanov, A. V. Chikiryaka, M. P. Scheglov, M. A. Odnobludov, and V. I. Nikolaev, Semiconductors 53 (6), 789 (2019). https://doi.org/10.1134/S1063782619060150

    Article  ADS  Google Scholar 

  20. R. Budynas and K. Nisbett, Shigley’s Mechanical Engineering Design, 8th ed. (McGraw-Hill, New York, 2008).

    Google Scholar 

  21. P. M. J. Rahnejat, PhD Thesis (Univ. London, London, 1988).

  22. K. L. Johnson, Contact Mechanics (Cambridge Univ. Press, Cambridge, 1985).

    Book  Google Scholar 

  23. P. Auerkari, Mechanical and Physical Properties of Engineering Alumina Ceramics (VTT, Espoo, 1996).

    Google Scholar 

  24. T. Vodenitcharova, L. C. Zhang, I. Zarudi, Y. Yin, H. Domyo, T. Ho, and M. Sato, J. Mater. Proc. Technol. 194 (1–3), 52 (2007).

  25. J. F. Archard, J. Appl. Phys. 24 (8), 981 (1953).

    Article  ADS  Google Scholar 

  26. E. J. Duwell, J. Appl. Phys. 33 (9), 2691 (1962).

    Article  ADS  Google Scholar 

  27. J. Gobet, P. N. Volpe, and M. A. Dubois, Appl. Phys. Lett. 108 (12), 124103 (2016).

    Article  ADS  Google Scholar 

  28. E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman, J. Mater. Process. Technol. 123 (1), 133 (2002). https://doi.org/10.1016/S0924-0136(02)00060-2

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank O.E. Yakupov for the development of software using which the cross-sectional areas of the wear zone were determined.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Butenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butenko, P.N., Guzilova, L.I., Chikiryaka, A.V. et al. Tribological Studies of α-β-Ga2O3 Layers Paired with a Sapphire Counterface. Tech. Phys. 66, 1186–1193 (2021). https://doi.org/10.1134/S1063784221090048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221090048

Navigation