Skip to main content
Log in

The Stability of Liquid Hydrocarbon Vapor Sensors Based on SnO2 Thin Films Modified with Various Catalysts

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The microstructure, composition, and electrical and gas-sensitive characteristics of sensors based on thin nanocrystalline SnO2 films with various catalysts deposited on the surface (Pt/Pd, Au) and introduced into the bulk (Au, Ni, Co) are investigated in the modes of constant and pulse heating. Atomic force microscopy and laser Raman spectroscopy are used to study micromorphology and structural defects depending on the composition of nanosized films. It is shown that sensors with Au and Co additives introduced into the volume make it possible to detect vapors of liquid hydrocarbons (on the example of aviation kerosene) at a concentration level of 5 ppm (0.1 of permissible exposure limit) and are characterized by increased stability of parameters during testing under prolonged exposure to vapors, as well as in conditions of varying humidity. Sensors with Au and Co additives in volume and deposited onto the film surface ultrathin two-layer Pt/Pd catalysts demonstrate the fastest response after testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Q. Dong, H. Su, D. Zhang, and F. Zhang, Nanotechnology 17 (15), 3968 (2006). https://doi.org/10.1088/0957-4484/17/15/060

    Article  ADS  Google Scholar 

  2. Y. Zong, Y. Cao, and D. Jia, Sens. Actuators, B 145 (1), 84 (2010). https://doi.org/10.1016/j.snb.2009.11.026

    Article  Google Scholar 

  3. A. A. Vasiliev and V. V. Malyshev, Sens. Actuators, B 189, 260 (2013). https://doi.org/10.1016/j.snb.2013.07.047

    Article  Google Scholar 

  4. G. Korotcenkov, Mater. Sci. Eng., B 139, 1 (2007).

    Article  Google Scholar 

  5. A. Cabot, A. Dieguez, A. Romano-Rodrigez, J. R. Morante, and N. Bârsan, Sens. Actuators, B 79, 98 (2001).

    Article  Google Scholar 

  6. M. N. Rumyantseva and A. M. Gas’kov, Russ. Chem. Bull. 57, 1106 (2008). https://doi.org/10.1007/s11172-008-0139-z

    Article  Google Scholar 

  7. G. Korotcenkov and B. K. Cho, Sens. Actuators, B 244, 182 (2017). https://doi.org/10.1016/j.snb.2016.12.117

    Article  Google Scholar 

  8. G. Korotcenkov and B. K. Cho, Sens. Actuators, B 156, 527 (2011). https://doi.org/10.1016/j.snb.2011.02.024

    Article  Google Scholar 

  9. I. Lee,  S.-J.  Choi,  K. M. Park,  S. S. Lee,  S. Choi, I.-D. Kim, and C. O. Park, Sens. Actuators, B 197, 300 (2014). https://doi.org/10.1016/j.snb.2014.02.043

    Article  Google Scholar 

  10. T. Itoh, I. Matsubara, M. Kadosaki, Y. Sakai, W. Shin, and N. Izu, Sensors 10, 6513 (2010). https://www.mdpi.com/1424-8220/10/7/6513

    Article  ADS  Google Scholar 

  11. N. K. Maksimova, E. Yu. Sevast’yanov, N. V. Sergeichenko, and E. V. Chernikov, Semiconductor Thin-Film Gas Sensors (NTL, Tomsk, 2016) [in Russian].

    Google Scholar 

  12. E. Yu. Sevast’yanov, N. K. Maksimova, A. I. Potekaev, N. V. Sergeichenko, E. V. Chernikov, A. V. Almaev, and B. O. Kushnarev, Russ. Phys. J. 60 (7), 1094 (2017). https://doi.org/10.1007/s11182-017-1184-6

    Article  Google Scholar 

  13. N. K. Maksimova, A. A. Biryukov, E. Yu. Sevast’yanov, and E. V. Chernikov, Russ. J. Appl. Chem. 93, 427 (2020). https://doi.org/10.1134/S1070427220030155

    Article  Google Scholar 

  14. N. K. Maksimova, A. V. Almaev, E. Y. Sevastyanov, A. I. Potekaev, E. V. Chernikov, N. V. Sergeychenko, P. M. Korusenko, and S. N. Nesov, Coatings 9 (7), 423 (2019). https://doi.org/10.3390/coatings9070423

    Article  Google Scholar 

  15. A. Díeguez, A. Romano-Rodríguez, A. Vilá, and J. R. Morante, J. Appl. Phys. 90 (3), 1550 (2001). https://doi.org/10.1063/1.1385573

    Article  ADS  Google Scholar 

  16. G. Singh, R. Thangaraj, and R. C. Singh, Ceram. Int. 42 (3), 4323 (2016). https://doi.org/10.1016/j.ceramint.2015.11.111

    Article  Google Scholar 

  17. M. Zheng, G. Li, X. Zhang, S. Huang, Y. Lei, and L. Zhang, Chem. Mater. 13 (11), 3859 (2001). https://doi.org/10.1021/cm010084q

    Article  Google Scholar 

  18. M. Ristic, M. Ivanda, S. Popovic, and S. Music, J. Non-Cryst. Solids 303 (2), 270 (2002). https://doi.org/10.1016/S0022-3093(02)00944-4

    Article  ADS  Google Scholar 

  19. M. Ocaña, C. J. Serna, J. V. Garcia-Ramos, and E. Matijevic, Solid State Ionics 63, 170 (1993). https://doi.org/10.1016/0167-2738(93)90102-9

    Article  Google Scholar 

  20. K. N. Yu, Y. Xiong, Y. Liu, and C. Xiong, Phys. Rev. B 55 (4), 2666 (1997). https://doi.org/10.1103/PhysRevB.55.2666

    Article  ADS  Google Scholar 

  21. M. N. Rumyantseva, A. M. Gaskov, N. Rosman, T. Pagnier, and J. R. Morante, Chem. Mater. 17 (4), 893 (2005). https://doi.org/10.1021/cm0490470

    Article  Google Scholar 

  22. H. C. Yao, H. S. Gandhi, and M. Shelef, Stud. Surf. Sci. Catal. 11, 159 (1982).

    Article  Google Scholar 

  23. H. C. Yao, M. Sieg, and H. K. Plummer, J. Catal. 59, 365 (1979).

    Article  Google Scholar 

  24. J. Z. Shyu, and K. Otto, Appl. Surf. Sci. 32 (1–2), 246 (1988). https://doi.org/10.1016/0169-4332(88)90085-2

  25. G. W. Graham, W. H. Weber, J. R. McBride, and C. R. Peters, J. Raman Spectrosc. 22, 1 (1991).

    Article  ADS  Google Scholar 

  26. K. Otto, W. H. Weber, G. W. Graham, and J. Shyu, Appl. Surf. Sci. 37 (2), 250 (1989). https://doi.org/10.1016/0169-4332(89)90487-X

    Article  ADS  Google Scholar 

  27. A. Cabot, A. Dieguez, A. Romano-Rodrígue, J. R. Morante, and N. Barsan, Sens. Actuators, B 79 (2–3), 98 (2001). https://doi.org/10.1016/S0925-4005(01)00854-1

  28. J. Kaur, J. Shah, R. K. Kotnala, and K. Ch. Verma, Ceram. Int. 38 (7), 5563 (2012). https://doi.org/10.1016/j.ceramint.2012.03.075

    Article  Google Scholar 

  29. L. P. Oleksenko, N. P. Maksymovych, A. I. Buvailo, I. P. Matushko, and N. Dollahon, Sens. Actuators, B 174, 39 (2012). https://doi.org/10.1016/j.snb.2012.07.079

    Article  Google Scholar 

  30. G. Korotcenkov, I. Boris, V. Brinzari, S. H. Han, and B. K. Cho, Sens. Actuators, B 182, 112 (2013). https://doi.org/10.1016/j.snb.2013.02.103

    Article  Google Scholar 

  31. L. Liu, C. Guo, S. Li, L. Wang, Q. Dong, and W. Li, Sens. Actuators, B 150, 806 (2010). https://doi.org/10.1016/j.snb.2010.07.022

    Article  Google Scholar 

  32. S. Roy, A. G. Joshi, S. Chatterjeec, and A. K. Ghosh, Nanoscale 10 (22), 10664 (2018). https://doi.org/10.1039/c7nr07427a

    Article  Google Scholar 

  33. M. A. Bañares and I. E. Wachs, J. Raman Spectrosc. 33 (5), 359 (2002). https://doi.org/10.1002/jrs.866

    Article  ADS  Google Scholar 

  34. A. M. Starik, N. S. Titova, and S. A. Torokhov, Combust., Explos. Shock Waves 49 (4), 392 (2013). https://doi.org/10.1134/S0010508213040023

    Article  Google Scholar 

  35. L. Q. Maurice, J. W. Blust, K. L. Leung, and R. P. Lindstedt, Proc. 37th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 11–14, 1999, AIAA 99-1038. https://doi.org/10.2514/6.1999-1038

  36. M. C. Carotta, V. Guidi, G. Martinelli, and M. Nagliati, Sens. Actuators, B 130 (1), 497 (2008). https://doi.org/10.1016/j.snb.2007.09.053

    Article  Google Scholar 

Download references

Funding

This work was carried out with support of the Program for Competitiveness Enhancement of Tomsk State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. O. Kushnarev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimova, N.K., Kushnarev, B.O., Khludkova, L.S. et al. The Stability of Liquid Hydrocarbon Vapor Sensors Based on SnO2 Thin Films Modified with Various Catalysts. Tech. Phys. 66, 999–1008 (2021). https://doi.org/10.1134/S1063784221070094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221070094

Navigation