Skip to main content
Log in

Modified Reception Parameters of 1–3 Composites Based on Ferroelectric Crystals

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The system of modified reception parameters of fibrous piezoactive composites “system of unidirectional ferroelectric crystalline rods–polymer matrix” with 1–3 connectivity is studied in a wide range of volume fractions of the crystalline component. The modified reception parameters are important for estimating the efficiency of harvesting, accumulation, and conversion of energy in a piezoelectric cell at a constant mechanical stress or at a constant strain. Polydomain crystals (1 – x)Pb(Mg1/3Nb2/3)O3xPbTiO3 (at 0.28 ≤ x ≤ 0.33) and \({\text{L}}{{{\text{i}}}_{{v}}}\)(K1 – yNay\({{)}_{{1 - {v}}}}\)(Nb1 – zTaz)O3:Mn crystals (at \({v}\) = 0.06, y = 0.1–0.3, and z = 0.07–0.17) poled along the [001] crystallographic direction are used as a piezoelectric component. The parameters calculated for 1–3 composites using the matrix method and the effective field method are compared. The role of electromechanical properties of the crystalline component in the formation of the modified reception parameters of composite reception is analyzed. The results of numerical simulation of the effective properties and modified reception parameters associated with them demonstrate the advantages of lead-free 1–3 composite over analogs based on (1 – x)Pb(Mg1/3Nb2/3)O3xPbTiO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.

Similar content being viewed by others

Notes

  1. On account of the weakness of the shear piezoelectric effect as compared with the longitudinal or transverse piezoelectric effect in various 1–3 composites based on FPC or ferroelectric crystals [27], we do not consider RPs \(\lambda _{{15,m}}^{*}\), \(L{\kern 1pt} _{{15}}^{*}\), and so on.

REFERENCES

  1. S. Priya, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 (12), 2010 (2010). https://doi.org/10.1109/TUFFC.2010.1734

    Article  Google Scholar 

  2. G. M. Sessler and J. Hillenbrand, Appl. Phys. Lett. 103 (12), 122904 (2013). https://doi.org/10.1063/1.4821647

    Article  ADS  Google Scholar 

  3. C. R. Bowen, V. Yu. Topolov, and H. A. Kim, Modern Piezoelectric Energy Harvesting (Springer, Switzerland, Cham, 2016).

    Book  Google Scholar 

  4. J. I. Roscow, R. W. C. Lewis, J. Taylor, and C. R. Bowen, Acta Mater. 128, 207 (2017). https://doi.org/10.1016/j.actamat.2017.02.029

    Article  ADS  Google Scholar 

  5. K. Uchino, Energy Technol. 6 (5), 829 (2018). https://doi.org/10.1002/ente.201700785

    Article  Google Scholar 

  6. J. I. Roscow, H. Pearce, H. Khanbareh, S. Kar-Narayan, and C. R. Bowen, Eur. Phys. J.: Spec. Top. 228 (7), 1537 (2019). https://doi.org/10.1140/epjst/e2019-800143-7

    Article  Google Scholar 

  7. T. Röodig, A. Schönecker, and G. Gerlach, J. Am. Ceram. Soc. 93 (4), 901 (2010). https://doi.org/10.1111/j.1551-2916.2010.03702.x

    Article  Google Scholar 

  8. The Design of Piezoelectric Instruments, Vol. 1: The Physics of Ferroelectric Ceramics, Ed. by A. V. Gorish (Radiotekhnika, Moscow, 1999) [in Russian].

    Google Scholar 

  9. L. Jiang, R. Chen, J. Xing, G. Lu, R. Li, Y. Jiang, K. Shung, J. Zhu, and Q. Zhou, J. Appl. Phys. 125 (21), 214501 (2019). https://doi.org/10.1063/1.5088171

    Article  ADS  Google Scholar 

  10. Q. Ke, W. H. Liew, H. Tao, J. Wu, and K. Yao, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 (8), 1395 (2019). https://doi.org/10.1109/TUFFC.2019.2914464

    Article  Google Scholar 

  11. F. Wang, C. He, Y. Tang, X. Zhao, and H. Luo, Mater. Chem. Phys. 105 (2–3), 273 (2007). https://doi.org/10.1016/j.matchemphys.2007.04.060

  12. D. Zhou, K. H. Lam, Y. Chen, Q. Zhang, Y. C. Chiu, H. Luo, J. Dai, and H. L. W. Chan, Sens. Actuators, A 182 (1), 95 (2012).

    Article  Google Scholar 

  13. Z. Yang, D. Zeng, H. Wang, C. Zhao, and J. Tan, Smart Mater. Struct. 24 (7), 075029 (2015). https://doi.org/10.1088/0964-1726/24/7/075029

    Article  ADS  Google Scholar 

  14. B. E. Pobedrya, Mechanics of Composite Materials (Moscow State Univ., Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  15. B. E. Pobedrya, Mech. Compos. Mater. 32 (6), 504 (1996). https://doi.org/10.1007/BF02280632

    Article  ADS  Google Scholar 

  16. M. L. Dunn, J. Appl. Phys. 73 (10), 5131 (1993). https://doi.org/10.1063/1.353787

    Article  ADS  Google Scholar 

  17. V. M. Levin, M. I. Rakovskaja, and W. S. Kreher, Int. J. Solids Struct. 36 (18), 2683 (1999). https://doi.org/10.1016/S0020-7683(98)00131-0

    Article  Google Scholar 

  18. N. Fakri, L. Azrar, and L. El Bakkali, Int. J. Solids Struct. 40 (2), 361 (2003). https://doi.org/10.1016/S0020-7683(02)00524-3

    Article  Google Scholar 

  19. S. K. Kanaun and V. M. Levin, The Effective Field Method in the Mechanics of Composite Materials (Petrozavodsk Sate Univ., Petrozavodsk, 1993) [in Russian].

    MATH  Google Scholar 

  20. S. Kanaun and V. Levin, in Effective Properties of Heterogeneous Materials, Ed. by M. Kachanov and I. Sevostianov (Springer, Dordrecht, 2013), p. 199.

    MATH  Google Scholar 

  21. L. P. Khoroshun, B. P. Maslov, and P. V. Leshchenko, Prediction of Effective Properties of Piezo-Active Composite Materials (Naukova Dumka, Kiev, 1989) [in Russian].

    Google Scholar 

  22. A. A. Pan’kov, Statistical Mechanics of Piezocomposites (Perm State Tech. Univ., Perm, 2009) [in Russian].

    Google Scholar 

  23. A. L. Kalamkarov and K. S. Challagulla, in Effective Properties of Heterogeneous Materials, Ed. by M. Kachanov and I. Sevostianov (Springer, Dordrecht, 2013), p. 283.

    Google Scholar 

  24. F. Levassort, M. Lethiecq, C. Millar, and L. Pourcelot, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 (5), 1497 (1998). https://doi.org/10.1109/58.738289

    Article  Google Scholar 

  25. V. Yu. Topolov, A. V. Krivoruchko, P. Bisegna, and C. R. Bowen, Ferroelectrics 376, 140 (2008). https://doi.org/10.1080/00150190802440997

    Article  Google Scholar 

  26. V. Yu. Topolov, P. Bisegna, and A. V. Krivoruchko, J. Phys. D: Appl. Phys. 41 (3), 035406 (2008). https://doi.org/10.1088/0022-3727/41/3/035406

    Article  ADS  Google Scholar 

  27. V. Yu. Topolov, C. R. Bowen, and P. Bisegna, Piezo-Active Composites. Microgeometry – Sensitivity Relations (Springer, Switzerland, Cham, 2018).

    Book  Google Scholar 

  28. Yu. V. Sokolkin and A. A. Pan’kov, Electroelasticity of Piezocomposites with Irregular Structures (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  29. S. V. Bezus, V. Yu. Topolov, and C. R. Bowen, J. Phys. D: Appl. Phys. 39 (9), 1919 (2006). https://doi.org/10.1088/0022-3727/39/9/029

    Article  ADS  Google Scholar 

  30. R. Zhang, B. Jiang, and W. Cao, J. Appl. Phys. 90 (7), 3471 (2001). https://doi.org/10.1063/1.1390494

    Article  ADS  Google Scholar 

  31. M. L. Dunn and M. Taya, Int. J. Solids Struct. 30 (2), 161 (1993). https://doi.org/10.1016/0020-7683(93)90058-F

    Article  Google Scholar 

  32. A. V. Turik, Sov. Phys.-Solid State 12 (3), 688 (1970).

    Google Scholar 

  33. W.A. Smith, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40 (1), 41 (1993). https://doi.org/10.1109/58.184997

    Article  Google Scholar 

  34. O. Sigmund, S. Torquato, and I. A. Aksay, J. Mater. Res. 13 (4), 1038 (1998). https://doi.org/10.1557/JMR.1998.0145

    Article  ADS  Google Scholar 

  35. J. H. Huang and J. S. Yu, Compos. Eng. 4 (11), 1169 (1994). https://doi.org/10.1016/0961-9526(95)91290-W

    Article  Google Scholar 

  36. L. Li and N. R. Sottos, J. Appl. Phys. 77 (9), 4595 (1995). https://doi.org/10.1063/1.359424

    Article  ADS  Google Scholar 

  37. J. Bennett and G. Hayward, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44 (3), 565 (1997). https://doi.org/10.1109/58.658308

    Article  Google Scholar 

  38. D. B. Deutz, J.-A. Pascoe, B. Schelen, S. van der Zwaag, D. M. de Leeuw, and P. Groen, Mater. Horiz. 5 (3), 444 (2018). https://doi.org/10.1039/C8MH00097B

    Article  Google Scholar 

  39. R. Zhang, W. Jiang, B. Jiang, and W. Cao, Fundamental Physics of Ferroelectrics, Ed. by R. E. Cohen (Am. Inst. Phys., Melville, 2002), p. 188.

    Google Scholar 

  40. S. Zhang, J. Luo, W. Hackenberger, and T. R. Shrout, J. Appl. Phys. 104 (6), 064106 (2008). https://doi.org/10.1063/1.2978333

    Article  ADS  Google Scholar 

  41. G. Liu, W. Jiang, J. Zhu, and W. Cao, Appl. Phys. Lett. 99 (16), 162901 (2011). https://doi.org/10.1063/1.3652703

    Article  ADS  Google Scholar 

  42. X. Huo, R. Zhang, L. Zheng, S. Zhang, R. Wang, J. Wang, S. Sang, B. Yang, and W. Cao, J. Am. Ceram. Soc. 98 (6), 1829 (2015). https://doi.org/10.1111/jace.13540

    Article  Google Scholar 

  43. L. V. Gibiansky and S. Torquato, J. Mech. Phys. Solids 45 (5), 689 (1997). https://doi.org/10.1016/S0022-5096(96)00106-8

    Article  ADS  MathSciNet  Google Scholar 

  44. B. Noheda, Curr. Opin. Solid State Mater. Sci. 6 (1), 27 (2002). https://doi.org/10.1016/S1359-0286(02)00015-3

    Article  ADS  Google Scholar 

  45. H. L. W. Chan and J. Unsworth, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36 (4), 434 (1989). https://doi.org/10.1109/58.31780

    Article  Google Scholar 

  46. D. L. Churchill and S. W. Arms, U.S. Patent No. 7880370 B2 (February 1, 2011).

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Russian Foundation for Basic Research for support. Thanks are also due to Prof. A.E. Panich (Southern Federal University) and Prof. C.R. Bowen (University of Bath, United Kingdom) for their unflagging interest in the subject of investigation and fruitful discussions concerning the effectiveness of modern piezoelectric materials. Special thanks are due to Dr. I.A. Parinov (Southern Federal University) and to the reviewer for thorough reading of the manuscript and valuable remarks.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 20-38-90163.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Topolov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topolov, V.Y., Isaeva, A.N. Modified Reception Parameters of 1–3 Composites Based on Ferroelectric Crystals. Tech. Phys. 66, 947–957 (2021). https://doi.org/10.1134/S1063784221060207

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221060207

Navigation