Skip to main content
Log in

Specific Features of the Interaction of a Germane Molecule with Germanium Surface in Vacuum in the Presence of Hydrogen Flow

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The temperature dependence of the main kinetic parameters that determine the rate of pyrolysis of adsorbed germane molecules on the surface of the growing germanium layer is analyzed in an interval of growth temperatures of 300–700°C. The degree of coverage of the germanium surface with hydrogen and radicals of germane molecules is estimated. A relationship between the characteristic rate of pyrolysis of hydride molecules and the capture rate of molecules on the surface and the rate of incorporation of Ge atoms into the growing layer is established. The temperature dependence of the rate of decomposition of molecular fragments on the germanium surface exhibits nonmonotonic behavior, the type of which depends on temperature regimes and the stage of the sorption process at which the surface captures hydrogen from the adsorbed hydride molecule. The pyrolysis characteristics of germane are compared with the corresponding characteristics of the pyrolysis of silane molecules. It is found that an increase in the concentration of working gases in the growth chamber substantially affects the catalytic properties of the growth surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Shi, E. S. Tok, and H. C. Kang, J. Chem. Phys. 127, 164713 (2007). https://doi.org/10.1063/1.2799980

    Article  ADS  Google Scholar 

  2. R. Q. M. Ng, E. S. Tok, and H. C. Hang, J. Chem. Phys. 131, 044707 (2009). https://doi.org/10.1063/1.3191780

    Article  ADS  Google Scholar 

  3. M. Shinohara, A. Seyama, Y. Kimura, and M. Niwano, Phys. Rev. B 65, 075319 (2002). https://doi.org/10.1103/PhysRevB.65.075319

    Article  ADS  Google Scholar 

  4. R. D. Smardon and G. P. Srivastava, J. Chem. Phys. 123, 174703 (2005). https://doi.org/10.1063/1.2087347

    Article  ADS  Google Scholar 

  5. N. Taylor, H. Kim, P. Desjardins, Y. L. Foo, and J. E. Greene, Appl. Phys. Lett. 76, 2853 (2000). https://doi.org/10.1063/1.126495

    Article  ADS  Google Scholar 

  6. L. K. Orlov, N. L. Ivina, and T. N. Smyslova, Russ. J. Gen. Chem. 83 (12), 2240 (2013). https://doi.org/10.1134/S1070363213120037

    Article  Google Scholar 

  7. J. M. Hartmann, V. Mazzocchi, F. Pierre, and J. P. Barnes, ECS Trans. 86, 219 (2018).

    Article  Google Scholar 

  8. H. Kim and J. E. Greene, Surf. Sci. 504, 108 (2002).

    Article  ADS  Google Scholar 

  9. T. I. Kammins, E. C. Carr, R. S. Williams, and S. J. Rosner, J. Appl. Phys. 81, 211 (1997). https://doi.org/10.1063/1.364084

    Article  ADS  Google Scholar 

  10. B. Cunningham, J. O. Chu, and S. Akbar, Appl. Phys. Lett. 59, 3574 (1991). https://doi.org/10.1063/1.105636

    Article  ADS  Google Scholar 

  11. M. Halbwax, D. Bouchier, V. Yam, D. Débarre, L. H. Nguyen, Y. Zheng, P. Rosner, M. Benamara, H. P. Strunk, and C. Clerc, J. Appl. Phys. 97, 064907 (2005). https://doi.org/10.1063/1.1854723

    Article  ADS  Google Scholar 

  12. J. M. Hartmann, F. Bertin, G. Rolland, M. N. Semeria, and G. Bremond, Thin Solid Films 479, 113 (2005). https://doi.org/10.1016/j.tsf.2004.11.204

    Article  ADS  Google Scholar 

  13. C. Li, S. John, and E. S. Quinones, J. Vac. Sci. Technol., A 14, 170 (1996). https://doi.org/10.1116/1.579915

    Article  ADS  Google Scholar 

  14. K. J. Kim, M. Suemitsu, M. Yamanaka, and N. Miyamoto, Appl. Phys. Lett. 62, 3461 (1993). https://doi.org/10.1063/1.109049

    Article  ADS  Google Scholar 

  15. L. K. Orlov and S. V. Ivin, Russ. J. Phys. Chem. B 10 (2), 219 (2016). https://doi.org/10.1134/S1990793116020056

    Article  Google Scholar 

  16. L. K. Orlov and S. V. Ivin, Russ. J. Gen. Chem. 85 (12), 2686 (2015). https://doi.org/10.1134/S107036321512004X

    Article  Google Scholar 

  17. J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fédéli, M. Rouviére, L. Vivien, and S. Laval, J. Appl. Phys. 95, 5905 (2004). https://doi.org/10.1063/1.1699524

    Article  ADS  Google Scholar 

  18. L. K. Orlov, V. A. Tolomasov, A. V. Potapov, and V. I. Vdovin, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., No, 2, 30 (1998).

  19. L. K. Orlov, V. A. Tolomasov, A. V. Potapov, Yu. N. Drozdov, and V. I. Vdovin, IEEE Trans. Semicond. Manuf. 9 (2), 215 (1996). https://doi.org/10.1109/SIM.1996.570942

    Article  Google Scholar 

  20. P. M. Garone, J. C. Sturm, and P. W. Schwartz, Appl. Phys. Lett. 56, 1275 (1990). https://doi.org/10.1063/1.102535

    Article  ADS  Google Scholar 

  21. S. Kobayashi, N. Mikoshiba, T. Matsuura, M. Sakuraba, and J. Murota, J. Cryst. Growth 174, 686 (1997).

    Article  ADS  Google Scholar 

  22. T. N. Adam, in SiGe and Si Strained-Layer Epitaxy for Silicon Heterostructure Devices, Ed. by J. D. Gressler (CRC–Tailor & Francis Group, New York, 2008), p. 7.

  23. J. Aubin, J. M. Hartmann, and V. Benevent, Thin Solid Films 602, 36 (2016). https://doi.org/10.1016/j.tsf.2015.07.024

    Article  ADS  Google Scholar 

  24. J. Aubin, J. M. Hartmann, M. Bauer, and S. Moffatt, J. Cryst. Growth 445, 65 (2016). https://doi.org/10.1016/j.jcrysgro.2016.04.018

    Article  ADS  Google Scholar 

  25. F. Leys, R. Bonzom, R. Loo, O. Richard, B. De Jaeger, J. Van Steenbergen, K. Dessein, T. Conard, J. Rip, H. Bender, W. Vandervorst, M. Meuris, and M. Caymax, Thin Solid Films 508, 292 (2006). https://doi.org/10.1016/j.tsf.2005.08.411

    Article  ADS  Google Scholar 

  26. T. Bramblett, Q. Lu, N. Lee, N. Taylor, M. Hasan, and J. E. Green, J. Appl. Phys. 77, 1504 (1995). https://doi.org/10.1063/1.358901

    Article  ADS  Google Scholar 

  27. L. K. Orlov and T. N. Smyslova, Semiconductors 39 (11), 1275 (2005).

    Article  ADS  Google Scholar 

  28. L. Surnev and M. Tikhov, Surf. Sci. 138, 40 (1984).

    Article  ADS  Google Scholar 

  29. L. B. Lewis, J. Segall, and K. C. Janda, J. Chem. Phys. 102, 7222 (1995). https://doi.org/10.1063/1.469117

    Article  ADS  Google Scholar 

  30. E. S. Tok, S. W. Ong, and H. Ch. Kang, J. Chem. Phys. 120, 5424 (2004). https://doi.org/10.1063/1.1645510

    Article  ADS  Google Scholar 

  31. B. A. Ferguson, C. T. Reeves, D. J. Safarik, and C. B. Mullins, J. Phys. Chem. 113, 2470 (2000).

    Article  Google Scholar 

  32. J. S. Lin and L. F. Lee, Int. J. Quantum Chem. 97, 736 (2004).

    Article  Google Scholar 

  33. J. S. Lin and Y. T. Kuo, Thin Solid Films 370, 192 (2000).

    Article  ADS  Google Scholar 

  34. J. K. Kang and C. B. Musgrave, Phys. Rev. B 64, 245330 (2001). https://doi.org/10.1103/PhysRevB.64.245330

    Article  ADS  Google Scholar 

  35. A. R. Brown and D. J. Doren, J. Chem. Phys. 110, 2643 (1999). https://doi.org/10.1063/1.477986

    Article  ADS  Google Scholar 

  36. L. K. Orlov, N. L. Ivina, and V. A. Bozhenkin, Semiconductors 53 (7), 979 (2019). https://doi.org/10.1134/S1063782619070182

    Article  ADS  Google Scholar 

  37. L. K. Orlov and T. N. Smyslova, Tech. Phys. 57 (11), 1547 (2012). https://doi.org/10.1134/S1063784212110187

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to L.K. Orlov for information on the growth rates of germanium layers and assistance in preparation of the manuscript.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-42-520062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Ivina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivina, N.L., Kondrashina, K.A. Specific Features of the Interaction of a Germane Molecule with Germanium Surface in Vacuum in the Presence of Hydrogen Flow. Tech. Phys. 66, 883–894 (2021). https://doi.org/10.1134/S1063784221060098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221060098

Navigation