Skip to main content
Log in

Features of the two-component decomposition of monosilane molecules on a silicon surface under epitaxial-process conditions

  • Fabrication, Treatment, and Testing of Materials and Structures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Using the results of technological experiments based on a two-component kinetic model (SiH4 → SiH3 + SiH), the range of characteristic decomposition frequencies of silicon-hydride molecule radicals adsorbed by the layer growth surface in the temperature range of 450–700°C is determined; the degree of silicon surface coverage by SiH radicals under epitaxial-growth conditions is estimated. The behavior of the temperature dependences of the factor of surface filling by individual molecule fragments and the rate of their decomposition on the silicon surface are determined under various conditions corresponding to a constant concentration ratio of monosilane radicals (SiH = gSiH3) or constant rates of their decomposition \(\left( {v_{SiH_3 } = \xi v_{SiH} } \right)\) in the entire temperature range. It is shown that the observed shape of the temperature dependence of the molecule decomposition rate on the growth surface is not described by simple activation-type curves, which is associated with features of the interaction of the molecular hydride beam with the Si surface under conditions of low and high levels of surface-bond saturation with hydrogen. The effect of the mechanism of the adsorption of hydrogen atoms and various conditions of their transfer from the molecule to the growth surface on the temperature dependences is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Brunev, A. N. Karpov, I. G. Neizvestny, N. L. Shwartz, and Z. Sh. Yanovitskaya, Int. J. Nanosci. 3, 9 (2004).

    Article  Google Scholar 

  2. A. K. Myers-Beaghton and D. D. Vvedenski, Phys. Rev. B 42, 9720 (1990).

    Article  ADS  Google Scholar 

  3. I. L. Aleiner and R. A. Suris, Sov. Phys. Solid State 34, 809 (1992).

    Google Scholar 

  4. K. Werner, S. Butzke, S. Radelaar, and F. Balk, J. Cryst. Growth 136, 338 (1994).

    Article  ADS  Google Scholar 

  5. R. D. Smardon and G. P. Srivastava, J. Chem. Phys. 123, 174703 (2005).

    Article  ADS  Google Scholar 

  6. R. Q. M. Ng, E. S. Tok, and H. C. Kang, J. Chem. Phys. 131, 044707 (2009).

    Article  ADS  Google Scholar 

  7. A. V. Potapov, L. K. Orlov, and S. V. Ivin, Thin Solid Films 336, 191 (1999).

    Article  Google Scholar 

  8. L. K. Orlov and S. V. Ivin, Semiconductors 45, 557 (2011).

    Article  ADS  Google Scholar 

  9. L. K. Orlov and T. N. Smyslova, Tech. Phys. 57, 1547 (2012).

    Article  Google Scholar 

  10. K. Sinniah, M. G. Sherman, L. B. Lewis, W. H. Weinberg, J. T. Yates, and K. C. Janda, Phys. Rev. Lett. 62, 567 (1989).

    Article  ADS  Google Scholar 

  11. C. M. Greenlief and M. Lier, Appl. Phys. Lett. 64, 601 (1994).

    Article  ADS  Google Scholar 

  12. R. W. Price, E. S. Tok, and J. Zhang, J. Cryst. Growth 209, 306 (2000).

    Article  ADS  Google Scholar 

  13. A. V. Potapov and L. K. Orlov, Phys. Status Solidi C 195, 853 (2003).

    Article  Google Scholar 

  14. A. V. Potapov, Crystallogr. Rep. 49, 220 (2004).

    Article  ADS  Google Scholar 

  15. J. Shi, E. S. Tok, and H. C. Kang, J. Chem. Phys. 127, 164713 (2007).

    Article  ADS  Google Scholar 

  16. M. Shinohara, A. Seyama, Y. Kimura, and M. Niwano, Phys. Rev. B 65, 075319 (2002).

    Article  ADS  Google Scholar 

  17. A. Yoshigoe, K. Mase, Y. Tsusaka, T. Urisu, Y. Kobayashi, and T. Ogino, Appl. Phys. Lett. 67, 2364 (1995).

    Article  ADS  Google Scholar 

  18. S. M. Gates, C. M. Greenlief, and D. B. Beach, J. Chem. Phys. 93, 7493 (1990).

    Article  ADS  Google Scholar 

  19. K. J. Kim, M. Suemitsu, M. Yamanaka, and N. Miyamoto, Appl. Phys. Lett. 62, 3461 (1993).

    Article  ADS  Google Scholar 

  20. B. A. Ferguson, C. T. Reeves, D. J. Safarik, and C. B. Mullins, J. Phys. Chem. 113, 2470 (2000).

    Article  Google Scholar 

  21. U. Hofer, L. Li, and T. F. Heinz, Phys. Rev. B 45, 9485 (1992).

    Article  ADS  Google Scholar 

  22. L. K. Orlov and T. N. Smyslova, Semiconductors 39, 1275 (2005).

    Article  ADS  Google Scholar 

  23. L. K. Orlov, S. V. Ivin, and T. N. Smyslova, Russ. J. Phys. Chem. B 5, 168 (2011).

    Article  Google Scholar 

  24. L. K. Orlov, N. L. Ivina, and T. N. Smyslova, Russ. J. General Chemistry 83, 2240 (2013).

    Article  Google Scholar 

  25. N. L. Ivina and T. N. Smyslova, Russ. J. Phys. Chem. B 7, 244 (2013).

    Article  Google Scholar 

  26. A. Vittadini and A. Selloni, Phys. Rev. Lett. 75, 4756 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Orlov.

Additional information

Original Russian Text © N.L. Ivina, L.K. Orlov, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 6, pp. 852–861.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivina, N.L., Orlov, L.K. Features of the two-component decomposition of monosilane molecules on a silicon surface under epitaxial-process conditions. Semiconductors 48, 828–837 (2014). https://doi.org/10.1134/S106378261406013X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378261406013X

Keywords

Navigation