Skip to main content
Log in

Reconstruction of the Radiation Source Spatial Distribution in a Proportional Scattering Medium

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A new method of image reconstruction for single-photon emission computer tomography (SPECT) in a proportional scattering medium has been suggested. Detector counts have been obtained by Monte Carlo simulation using the Geant4 nuclear physics software package, which has eliminated the need for applying a real tomograph, radiopharmaceuticals (radiotracers), and a SPECT phantom. Detector counts obtained using Geant4 are virtually the same as those that could be obtained in a full-scale experiment carried out in a real scattering medium. The influence of the absorbing and scattering capabilities of 13 different substances modeling a medium in which the radiation source spatial distribution is submerged on the tomogram reconstruction accuracy has been studied. That this algorithm has considerable advantages for emission tomogram reconstruction over conventional one have been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. V. Pikalov and T. S. Mel’nikova, Plasma Tomography (Nauka, Novosibirsk, 1995) [in Russian].

    Google Scholar 

  2. Emission Tomography: The Fundamentals of PET and SPECT, Eds. by M. N. Wernick and J. N. Aarsvold (Academic, San Diego, 2004).

  3. S. A. Tereshchenko, Computerized Tomohraphy Techniques (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  4. J. Prekeges, Nuclear Medicine Instrumentation (Jones and Bartlett, Burlington, MA, 2012).

    Google Scholar 

  5. S. R. Cherry, J. A. Sorenson, and M. E. Phelps, Physics in Nuclear Medicine (Elsevier Health Sci., Philadelphia, 2012).

    Google Scholar 

  6. Webb’s Physics of Medical Imaging, Ed. by M. A. Flower (CRC, Boca Raton, 2012).

    Google Scholar 

  7. K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison–Wesley, Reading, Mass., 1967).

  8. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).

    MATH  Google Scholar 

  9. A. M. Kol’chuzhkin and V. V. Uchaikin, Introduction to the Theory of the Passage of Particles through Matter (Atomizdat, Moscow, 1978) [in Russian].

    Google Scholar 

  10. L. A. Apresyan and Yu. A. Kravtsov, Radiation Transfer: Statistical and Wave Aspects (Gordon and Breach, Basel, 1996).

    MATH  Google Scholar 

  11. H. H. Barrett, B. Gallas, E. Clarkson, and A. Clough, in Computational Radiology and Imaging, Eds by C. Börgers and F. Natterer (Springer, New York, 1999), p. 71.

  12. E. M. A. Hussein, Radiation Mechanics: Principles and Practice (Elsevier, Amsterdam, 2010).

    Google Scholar 

  13. S. Bellini, M. Piacentini, C. Cafforio, and F. Rocca, IEEE Trans. Acoust., Speech, Signal Process. 27 (3), 213 (1979). https://doi.org/10.1109/TASSP.1979.1163232

    Article  MathSciNet  Google Scholar 

  14. O. Tretiak and C. Metz, SIAM J. Appl. Math. 39 (2), 341 (1980). https://doi.org/10.1137/0139029

    Article  MathSciNet  Google Scholar 

  15. G. T. Gullberg and T. F. Budinger, IEEE Trans. Biomed. Eng. 28 (2), 142 (1981). https://doi.org/10.1109/TBME.1981.324787

    Article  Google Scholar 

  16. I. A. Hazou and D. C. Solmon, J. Math. Anal. Appl. 141 (1), 109 (1989). https://doi.org/10.1016/0022-247X(89)90209-6

    Article  MathSciNet  Google Scholar 

  17. P. P. Bruyant, J. Nucl. Med. 43, 1343 (2002).

    Google Scholar 

  18. S. A. Tereshchenko, Tech. Phys. 62 (9), 1293 (2017). https://doi.org/10.1134/S1063784217090250

    Article  Google Scholar 

  19. I. M. Sobol’, Monte Carlo Numerical Methods (Nauka, Moscow, 1973) [in Russian].

    MATH  Google Scholar 

  20. G. Fishman, Monte Carlo: Concepts, Algorithms, and Applications (Springer, New York, 2013).

    MATH  Google Scholar 

  21. O. N. Vassiliev, Monte Carlo Methods for Radiation Transport: Fundamentals and Advanced Topics (Springer, New York, 2016).

    Google Scholar 

  22. J. Allison et al., IEEE Trans. Nucl. Sci. 53 (1), 270 (2006). https://doi.org/10.1109/TNS.2006.869826

    Article  ADS  Google Scholar 

  23. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506 (3), 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  24. J. Allison et al., Nucl. Instrum. Methods Phys. Res., Sect. A 835, 186 (2016). https://doi.org/10.1016/j.nima.2016.06.125

    Article  Google Scholar 

  25. J. Baro, J. Sempau, J. M. Fernandez-Varea, and F. Salvat, Nucl. Instrum. Methods Phys. Res., Sect. B 100, 31 (1995). https://doi.org/10.1016/0168-583X(95)00349-5

    Article  Google Scholar 

  26. D. Sarrut et al., Med. Phys. 41 (6), 064301 (2014). https://doi.org/10.1118/1.4871617

    Article  Google Scholar 

  27. XCOM: Photon Cross Sections Database (https:// www.nist.gov/pml/xcom-photon-cross-sections-database). https://doi.org/10.18434/T48G6X

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, grant no. 19-32-90049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Tereshchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshchenko, S.A., Lysenko, A.Y. Reconstruction of the Radiation Source Spatial Distribution in a Proportional Scattering Medium. Tech. Phys. 66, 805–814 (2021). https://doi.org/10.1134/S1063784221050236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221050236

Navigation