Skip to main content
Log in

Photoluminescence of Low-Dimensional Polymethylmethacrylate/(Zn,Cd,Mn,Eu)S Composite Structures

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We implemented a colloidal technology for the synthesis and alloying of low-dimensional structures based on zinc and cadmium sulfides directly in an acrylic monomer medium during obtaining optically transparent polymethylmethacrylate/(Zn,Cd,Mn,Eu)S composites. The photoluminescence of the composites is associated with the system of levels of structural defects of the semiconductor particles located in its forbidden zone, which are formed upon successive doping of ZnS and CdS layers with Mn2+ and Eu3+ ions, and with intraband 5D07F1,2,4 transitions of 4f electrons of Eu3+ ions. Photoluminescence excitation is achieved by the transition of electrons from the valence band of the semiconductor to the levels of structural defects and partial energy transfer to the excited energy levels of Eu3+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. B. P. Chandra, V. K. Chandra, and P. Jha, Solid State Phenom. 222, 1 (2015). https://doi.org/10.4028/www.scientific.net/SSP.222.1

    Article  Google Scholar 

  2. A. M. El-Toni, M. A. Habila, J. P. Labis, Z. A. ALOthman, M. Alhoshan, A. A. Elzatahry, and F. Zhang, Nanoscale 8 (5), 2510 (2016). https://doi.org/10.1039/C5NR07004J

    Article  ADS  Google Scholar 

  3. E. Ramya, M. V. Rao, and D. N. Rao, Physica E 107, 24 (2019). https://doi.org/10.1016/j.physe.2018.11.010

    Article  ADS  Google Scholar 

  4. N. X. Ca, N. T. Hien, N. T. Luyen, V. T. K. Lien, L. D. Thanh, P. V. Do, N. Q. Bau, and T. T. Pham, J. Alloys Compd. 787, 823 (2019). https://doi.org/10.1016/j.jallcom.2019.02.139

    Article  Google Scholar 

  5. O. N. Kazankin, L. Ya. Markovskii, I. A. Mironov, F. M. Pekerman, and L. N. Petoshina, Inorganic Phosphors (Khimiya, Leningrad, 1975) [in Russian].

    Google Scholar 

  6. T. A. Kuchakova, G. V. Vesna, and V. A. Makara, Semiconductors 38 (11), 1275 (2004). https://doi.org/10.1134/1.1823058

    Article  ADS  Google Scholar 

  7. Yu. Yu. Bacherikov, I. P. Vorona, S. V. Optasyuk, V. E. Rodionov, and A. A. Stadnik, Semiconductors 38 (9), 987 (2004). https://doi.org/10.1134/1.1797471

    Article  ADS  Google Scholar 

  8. N. K. Morozova, I. A. Karetnikov, D. A. Mideros, E. M. Gavrishchuk, and V. B. Ikonnikov, Semiconductors 40 (10), 1155 (2006). https://doi.org/10.1134/S106378260610006X

    Article  ADS  Google Scholar 

  9. R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994).

    Article  ADS  Google Scholar 

  10. J. Planelles-Aragó, B. Julián-López, E. Cordoncillo, P.  Escribano, F. Pellé, B. Viana, and C. Sanchez, J. Mater. Chem. 18 (43), 5193 (2008). https://doi.org/10.1039/b809254k

    Article  Google Scholar 

  11. Y. G. Galyametdinov, D. O. Sagdeev, V. K. Voronkova, R. R. Shamilov, and A. A. Sukhanov, Russ. Chem. Bull. 67 (1), 172 (2018). https://doi.org/10.1007/s11172-018-2055-1

    Article  Google Scholar 

  12. D. O. Sagdeev, Candidate’s Dissertation in Chemistry (Kazan Nat. Res. Technol. Univ., Kazan, 2019).

  13. A. A. Bol, R. Van Beek, J. Ferwerda, and A. Meijerink, J. Phys. Chem. Solids 64 (2), 247 (2003). https://doi.org/10.1016/S0022-3697(02)00286-X

    Article  ADS  Google Scholar 

  14. S. Salimian and S. F. Shayesteh, J. Supercond. Novel Magn. 25 (6), 2009 (2012). https://doi.org/10.1007/s10948-012-1549-6

    Article  Google Scholar 

  15. A. A. Isaeva and V. P. Smagin, Polzunov. Vestn., No. 2, 107 (2018). https://doi.org/10.25712/ASTU.2072-8921.2018.02.020

  16. P. Mukherjee, R. F. Sloan, Ch. M. Shade, D. H. Waldeck, and S. Petoud, J. Phys. Chem. C 117 (27), 14451 (2013). https://doi.org/10.1021/jp404947x

    Article  Google Scholar 

  17. Z. Liang, J. Mu, L. Han, and H. Yu, J. Nanomater. 2015, 519303 (2015). https://doi.org/10.1155/2015/519303

  18. Q. Chen, J. Song, Ch. Zhou, Q. Pang, and L. Zhou, Mater. Sci. Semicond. Process. 46, 53 (2016). https://doi.org/10.1016/j.mssp.2016.02.005

    Article  Google Scholar 

  19. H. Feng, L. Tang, G. Zeng, Ya. Zhou, Ya. Deng, X. Ren, B. Song, Ch. Liang, M. Wei, and J. Yu, Adv. Colloid Interface Sci. 267, 26 (2019). https://doi.org/10.1016/j.cis.2019.03.001

    Article  Google Scholar 

  20. T. A. Esquivel-Castroa, M. C. Ibarra-Alonso, J. Oliva, and A. Martínez-Luévanos, Mater. Sci. Eng. 96, 915 (2019). https://doi.org/10.1016/j.msec.2018.11.067

  21. W. Lu, X. Guo, Y. Luo, Q. Li, R. Zhu, and H. Pang, Chem. Eng. J. 355, 208 (2019). https://doi.org/10.1016/j.cej.2018.08.132

  22. H. Zhao and F. Rosei, Chem 3 (2), 229 (2017). https://doi.org/10.1016/j.chempr.2017.07.007

  23. D. V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson, and H. Weller, Phys. Chem. B 108 (49), 18826 (2004). https://doi.org/10.1021/jp046481g

  24. Y. Lu, Y. Q. Zhang, and X. A. Cao, Appl. Phys. Lett. 102 (2), 023106 (2013). https://doi.org/10.1063/1.4775678

  25. P. Mеlinon, S. Begin-Colin, J. L. Duvail, F. Gauffre, N. H. Boime, G. Ledoux, J. Plain, P. Reiss, F. Silly, and B. Warot-Fonrose, Phys. Rep. 543, 163 (2014). http://dx.doi.org/10.1016/j.physrep.2014.05.003

  26. H. Kumar, A. Kumari, and R. R. Singh, Opt. Mater. 69, 23 (2017). http://dx.doi.org/10.1016/j.optmat.2017.04.009

  27. C. Rosiles-Perez, A. Cerdán-Pasarán, S. Sidhik, D. Esparza, T. López-Luke, and E. de la Rosa, Sol. Energy 174 (1), 240 (2018). https://doi.org/10.1016/j.solener.2018.08.081

  28. N. S. M. Mustakim, Ch. A. Ubani, S. Sepeai, N. A. Ludin, M. A. M. Teridi, and M. A. Ibrahim, Sol. Energy 163, 256 (2018). https://doi.org/10.1016/j.solener.2018.02.003

  29. Ch. V. Reddy, J. Shim, and M. Cho, J. Phys. Chem. Solids 103, 209 (2017). https://doi.org/10.1016/j.jpcs.2016.12.011

  30. W. Cao, X. Zhang, Y. Zheng, K. Wang, and H. Dai, Int. J. Hydrogen Energy 42 (5), 2924 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.116

  31. P. Kunstman, J. Coulon, O. Kolmykov, H. Moussa, L. Balan, G. Medjahdi, J. Lulek, and R. Schneider, J. Lumin. 194, 760 (2018). https://doi.org/10.1016/j.jlumin.2017.09.047

  32. A. A. Biryukov, T. I. Izaak, V. A. Svetlichnyi, and O. V. Babkina, Russ. Phys. J. 49 (12), 1354 (2006). https://doi.org/10.1007/s11182-006-0265-8

  33. H. Zhao, H. Liang, F. Vidal, F. Rosei, A. Vomiero, and D. Ma, J. Phys. Chem. C 118 (35), 20585 (2014). https://doi.org/10.1021/jp503617h

  34. T. V. Samofalova and V. N. Semenov, Kondens. Sredy Mezhfaz. Granitsy 18 (2), 248 (2016).

  35. S. Muruganandam, G. Anbalagan, and G. Murugadoss, Ind. J. Phys. 89 (8), 835 (2015). https://doi.org/10.1007/s12648-015-0650-7

  36. M. Kuzmanović, D. K. Bozanić, D. Milivojević, D. M. Ćulafić, S. Stanković, C. Ballesteros, and J. Gonzalez-Benito, RSC Adv. 7 (84), 53422 (2017). https://doi.org/10.1039/C7RA11011A

  37. V. P. Smagin, D. A. Davydov, N. M. Unzhakova, and A. A. Biryukov, Russ. J. Inorg. Chem. 60 (12), 1588 (2015). https://doi.org/10.1134/S0036023615120244

  38. V. P. Smagin, A. A. Isaeva, N. S. Eremina, and A. A. Biryukov, Russ. J. Appl. Chem. 88 (6), 1020 (2015). https://doi.org/10.1134/S1070427215060208

  39. K. Yu. Ponomareva, I. D. Kosobudsky, E. V. Tret’yachenko, and G. Yu. Yurkov, Inorg. Mater. 43 (11), 1160 (2007). https://doi.org/10.1134/S0020168507110027

  40. R. M. Abozaid, Z. Ž. Lazarević, I. Radović, M. Gilić, D. Šević, M. S. Rabasović, and I. Radović, Opt. Mater. 92, 405 (2019). https://doi.org/10.1016/j.optmat.2019.05.012

  41. A. A. Isaeva and V. P. Smagin, Russ. J. Inorg. Chem. 64 (10), 1199 (2019). https://doi.org/10.1134/S0036023619100061

  42. V. P. Smagin, N. S. Eremina, and M. S. Leonov, Inorg. Mater. 54 (2), 103 (2018). https://doi.org/10.1134/S0020168518020139

  43. V. P. Smagin, N. S. Eremina, and M. S. Leonov, Semiconductors 52 (8), 1022 (2018). https://doi.org/10.1134/S1063782618080213

  44. V. P. Smagin, N. S. Eremina, and A. G. Skachkov, Opt. Spectrosc. 124 (5), 668 (2018). https://doi.org/10.1134/S0030400X1805020X

  45. A. A. Isaeva and V. P. Smagin, Semiconductors 54 (12), 1583 (2020). https://doi.org/10.1134/S1063782620120106]

Download references

ACKNOWLEDGMENTS

This work was carried out using the scientific equipment of the Interregional Center for Collective Use of Tomsk State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Smagin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smagin, V.P., Isaeva, A.A. Photoluminescence of Low-Dimensional Polymethylmethacrylate/(Zn,Cd,Mn,Eu)S Composite Structures. Tech. Phys. 66, 798–804 (2021). https://doi.org/10.1134/S1063784221050224

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221050224

Navigation