Skip to main content
Log in

On the Molecular Nature of Differences in the Response of Sensory Neurons and Fibroblasts to Ouabain

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The effects of ouabain on the mechanical characteristics of primary sensory neurons and fibroblasts of 10- to 12-day-old chicken embryos were investigated by atomic force microscopy under physiologically relevant conditions. Fibroblasts express only the α1 isoform of Na,K-ATPase, while sensory neurons express the α1 and α3 isoforms. It was found that exposure to ouabain in the concentration corresponding to its endogenous level led to an increase in membrane rigidity of sensory neurons, which was apparently due to activation of the transducer rather than the pumping function of Na,K-ATPase. The mechanical parameters of fibroblasts were not affected by exposure to endogenous concentrations of ouabain. These results suggest that endogenous ouabain specifically modulates the transducer function of the α3 Na,K-ATPase isoform in the sensory neuron membrane. Thus, atomic force microscopy was efficiently applied to perform a comparative study of intracellular signaling cascades in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. J. C. Skou, J. Am. Soc. Nephrol. 23 (11), 394 (1957).

    Google Scholar 

  2. J. C. Skou and M. Esmann, J. Bioenerg. Biomembr. 24 (3), 249 (1992). https://doi.org/10.1007/BF00768846

    Article  Google Scholar 

  3. G. Blanco and R. W. Mercer, Am. J. Physiol. 275 (5), F633 (1998). https://doi.org/10.1152/ajprenal.1998.275.5.F633

    Article  Google Scholar 

  4. J. H. Kaplan, Annu. Rev. Biochem. 71, 511 (2002). https://doi.org/10.1146/annurev.biochem.71.102201.141218

    Article  Google Scholar 

  5. E. Silva and P. Soares-da-Silva, Int. Rev. Cell Mol. Biol. 294, 99 (2012). https://doi.org/10.1016/B978-0-12-394305-7.00002-1

    Article  Google Scholar 

  6. M. V. Clausen, F. Hilbers, and H. Poulsen, Front. Physiol. 8, 371 (2017). https://doi.org/10.3389/fphys.2017.00371

    Article  Google Scholar 

  7. P. Kometiani, J. Li, L. Gnudi, B. B. Kahn, A. Askari, and Z. Xie, J. Biol. Chem. 273 (24), 15249 (1998). https://doi.org/10.1074/jbc.273.24.15249

    Article  Google Scholar 

  8. B. V. Krylov, A. V. Derbenev, S. A. Podzorova, M. Lyudyno, A. V. Kuz’min, and N. L. Izvarina, Fiziol. Zh. 85 (2), 225 (1999).

    Google Scholar 

  9. M. Haas, A. Askari, and Z. Xie, J. Biol. Chem. 275 (36), 27832 (2000). https://doi.org/10.1074/jbc.M002951200

    Article  Google Scholar 

  10. J. M. Hamlyn, M. P. Blaustein, S. Bova, D. W. DuCharme, D. W. Harris, F. Mandel, W. R. Mathews, and J. H. Ludens, Proc. Natl. Acad. Sci. U.S.A. 88 (14), 6259 (1991). https://doi.org/10.1073/pnas.88.14.6259

    Article  ADS  Google Scholar 

  11. S. J. Khundmiri, M. A. Metzler, M. Ameen, V. Amin, M. J. Rane, and N. A. Delamere, Am. J. Physiol.: Cell Physiol. 291 (6), C1247 (2006). https://doi.org/10.1152/ajpcell.00593.2005

    Article  Google Scholar 

  12. V. Buckalew, Am. J. Physiol.: Heart Circ. Physiol. 297 (6), H1972 (2009). https://doi.org/10.1152/ajpheart.01002.2009

    Article  Google Scholar 

  13. X. Cui and Z. Xie, Molecules 22, 990 (2017). https://doi.org/10.3390/molecules22060990

    Article  Google Scholar 

  14. M. P. Blaustein, Am. J. Physiol.: Cell Physiol. 314 (1), C3 (2018). https://doi.org/10.1152/ajpcell.00196.2017

    Article  Google Scholar 

  15. J. Li, Na, K-ATPase as a Signaling Transducer (Stockholm, 2007).

  16. E. V. Lopatina, I. L. Yachnev, V. A. Penniyaynen, V.   B.   Plakhova, S. A. Podzorova, T. N. Shelykh, I. V. Rogachevsky, I. P. Butkevich, V. A. Mikhailenko, A. V. Kipenko, and B. V. Krylov, Med. Chem. 8 (1), 33 (2012). https://doi.org/10.2174/157340612799278531

    Article  Google Scholar 

  17. F. Lai, N. Madan, Q. Ye, Q. Duan, Z. Li, S. Wang, S. Si, and Z. Xie, J. Biol. Chem. 288 (19), 13295 (2013). https://doi.org/10.1074/jbc.M113.467381

    Article  Google Scholar 

  18. D. Lichtstein, A. Ilani, H. Rosen, N. Horesh, S. V. Singh, N. Buzaglo, and A. Hodes, Int. J. Mol. Sci. 19 (8), 2314 (2018). https://doi.org/10.3390/ijms19082314

    Article  Google Scholar 

  19. F. K. Khalaf, P. Dube, A. Mohamed, J. Tian, D. Malhotra, S. T. Haller, and D. J. Kennedy, Int. J. Mol. Sci. 19 (9), 2576 (2018). https://doi.org/10.3390/ijms19092576

    Article  Google Scholar 

  20. B. V. Krylov, I. V. Rogachevskii, T. N. Shelykh, and V. B. Plakhova, New Non-Opioid Analgesics: Understanding Molecular Mechanisms on the Basis of Patch-Clamp and Quantum-Chemical Studies (Bentham Sci., Sharjah, 2017). https://doi.org/10.2174/97816080593001170101

  21. V. A. Penniyaynen, V. B. Plakhova, I. V. Rogachevsky, S. G. Terekhin, S. A. Podzorova, and B. V. Krylov, Pathophysiology 26 (3–4), 245 (2019). https://doi.org/10.1016/j.pathophys.2019.06.003

  22. A. Kawamura, J. Guo, Y. Itagaki, C. Bell, Y. Wang, G. T. Haupert, Jr., S. Magil, R. T. Gallagher, N. Berova, and K. Nakanishi, Proc. Natl. Acad. Sci. U. S. A. 96 (12), 6654 (1999). https://doi.org/10.1073/pnas.96.12.6654

    Article  ADS  Google Scholar 

  23. J. B. Lingrel and T. Kuntzweiler, J. Biol. Chem. 269 (31), 19659 (1994).

    Article  Google Scholar 

  24. K. Geering, J. Bioenerg. Biomembr. 37 (6), 387 (2005). https://doi.org/10.1007/s10863-005-9476-x

    Article  Google Scholar 

  25. J. L. Brodsky, J. Biol. Chem. 265 (18), 10458 (1990).

    Article  Google Scholar 

  26. R. Holm, M. S. Toustrup-Jensen, A. P. Einholm, V. R. Schack, J. P. Andersen, and B. Vilsen, Biochim. Biophys. Acta 1857 (11), 1807 (2016). https://doi.org/10.1016/j.bbabio.2016.08.009

    Article  Google Scholar 

  27. M. Mata, G. J. Siegel, V. Hieber, M. W. Beaty, and D. J. Fink, Brain Res. 546 (1), 47 (1991). https://doi.org/10.1016/0006-8993(91)91157-v

    Article  Google Scholar 

  28. D. Romanovsky, A. E. Moseley, R. E. Mrak, M. D. Taylor, and M. Dobretsov, J. Comp. Neurol. 500 (6), 1106 (2007). https://doi.org/10.1002/cne.21218

    Article  Google Scholar 

  29. D. Paul, R. D. Soignier, L. Minor, H. Tau, E. Songu-Mize, and H. J. Gould III, J. Neurol. Sci. 340 (1–2), 139 (2014). https://doi.org/10.1016/j.jns.2014.03.012

  30. A. Mobasheri, J. Avila, I. Cozar-Castellano, M. D. Brown- leader, M. Trevan, M. J. O. Francis, J. F. Lamb, and P. Martin-Vasallo, Biosci. Rep. 20 (2), 51 (2000). https://doi.org/10.1023/a:1005580332144

    Article  Google Scholar 

  31. M. Li, D. Dang, L. Liu, N. Xi, and Y. Wang, IEEE Trans. NanoBiosci. 16 (6), 523 (2017). https://doi.org/10.1109/TNB.2017.2714462

    Article  Google Scholar 

  32. X. Deng, F. Xiong, X. Li, B. Xiang, Z. Li, X. Wu, C. Guo, X. Li, Y. Li, G. Li, W. Xiong, and Z. Zeng, J. Nanobiotechnol. 16 (1), 102 (2018). https://doi.org/10.1186/s12951-018-0428-0

  33. E. Spedden and C. Staii, Int. J. Mol. Sci. 14 (8), 16124 (2013). https://doi.org/10.3390/ijms140816124

    Article  Google Scholar 

  34. M. M. Khalisov, A. V. Ankudinov, V. A. Penniyaynen, D. Dobrota, and B. V. Krylov, Acta Physiol. Hung. 102 (2), 125 (2015). https://doi.org/10.1556/036.102.2015.2.2

    Article  Google Scholar 

  35. M. M. Khalisov, A. V. Ankudinov, V. A. Penniyaynen, T. E. Timoshenko, K. I. Timoshchuk, M. V. Samsonov, and V. P. Shirinsky, IOP Conf. Ser.: Mater. Sci. Eng. 256, 012010 (2017). https://doi.org/10.1088/1757-899X/256/1/012010

  36. T. G. Kuznetsova, M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. I. Zhdanov, Micron 38 (8), 824 (2007). https://doi.org/10.1016/j.micron.2007.06.011

    Article  Google Scholar 

  37. N. Gavara, Microsc. Res. Tech. 80 (1), 75 (2017). https://doi.org/10.1002/jemt.22776

    Article  Google Scholar 

  38. M. M. Khalisov, Candidate’s Dissertation in Technical Sciences (ITMO Univ., St. Petersburg, 2018).

  39. K. I. Timoshchuk, Candidate’s Dissertation in Mathematics and Physics (ITMO Univ., St. Petersburg, 2019).

  40. M. M. Khalisov, V. A. Penniyaynen, N. A. Esikova, A. V. Ankudinov, and B. V. Krylov, Tech. Phys. Lett. 43 (1), 85 (2017). https://doi.org/10.1134/S1063785017010072

    Article  ADS  Google Scholar 

  41. A. V. Ankudinov, M. M. Khalisov, V. A. Penniyaynen, S. A. Podzorova, K. I. Timoshchuk, and B. V. Krylov, Tech. Phys. Lett. 44, 671 (2018). https://doi.org/10.1134/S1063785018080035

    Article  ADS  Google Scholar 

  42. I. N. Sneddon, Int. J. Eng. Sci. 3 (1), 47 (1965). https://doi.org/10.1016/0020-7225(65)90019-4

    Article  Google Scholar 

  43. D. Nečas and P. Klapetek, Cent. Eur. J. Phys. 10 (1), 181 (2012).

    Google Scholar 

  44. G. Pigino, Y. Song, L. L. Kirkpatrick, and S.T. Brady, in Basic Neurochemistry: Principles of Molecular, Cellular and Medical Neurobiology, Eds. by S. T. Brady, G. J. Siegel, R. W. Albers, and D. L. Price, 8th ed. (Academic, 2012), p. 109.

  45. M. Dobretsov, S. L. Hastings, and J. R. Stimers, Neuroscience 93, 723 (1999). https://doi.org/10.1016/s0306-4522(99)00122-0

    Article  Google Scholar 

  46. A. Parekh, A. J. Campbell, L. Djouhri, X. Fang, S. McMullan, C. Berry, C. Acosta, and S. N. Lawson, J. Physiol. 588, 4131 (2010). https://doi.org/10.1113/jphysiol.2010.196386

    Article  Google Scholar 

  47. I. J. Edwards, G. Bruce, C. Lawrenson, L. Howe, S. J. Clapcote, S. A. Deuchars, and J. Deuchars, J. Neurosci. 33 (24), 9913 (2013). https://doi.org/10.1523/JNEUROSCI.5584-12.2013

    Article  Google Scholar 

  48. W. J. O’Brien, J. B. Lingrel, and E. T. Wallick, Arch. Biochem. Biophys. 310 (1), 32 (1994). https://doi.org/10.1006/abbi.1994.1136

    Article  Google Scholar 

  49. B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, N. A. Taback, E.J. Millet, and J. J. Fredberg, Phys. Rev. E 68, 041914 (2003). https://doi.org/10.1103/PhysRevE.68.041914

    Article  ADS  Google Scholar 

  50. E. Moeendarbary and A. R. Harris, WIREs Syst. Biol. Med. 6 (5), 371 (2014). https://doi.org/10.1002/wsbm.1275

    Article  Google Scholar 

  51. K. I. Timoshchuk, M. M. Khalisov, V. A. Penniyaynen B. V. Krylov, and A. V. Ankudinov, Tech. Phys. Lett. 45 (9), 947 (2019). https://doi.org/10.1134/S1063785019090293

    Article  ADS  Google Scholar 

  52. M. M. Khalisov, V. A. Penniyaynen, S. A. Podzorova, K. I. Timoshchuk, A. V. Ankudinov, and B. V. Krylov, Tech. Phys. 65 (11), 1853 (2020). https://doi.org/10.1134/S106378422011016X

    Article  Google Scholar 

  53. M. N. Uddin, D. Horvat, S. S. Glaser, B. M. Mitchell, and J. B. Puschett, J. Biol. Chem. 283, 17946 (2008). https://doi.org/10.1074/jbc.m800958200

    Article  Google Scholar 

  54. L. E. M. Quintas, S. V. Pierre, L. Liu, Y. Bai, X. Liu, and Z. J. Xie, J. Mol. Cell. Cardiol. 49 (3), 525 (2010). https://doi.org/10.1016/j.yjmcc.2010.04.015

    Article  Google Scholar 

  55. M. Akashi, A. H. Loussararian, D. C. Adelman, M. Saito, and H. P. Koeffler, J. Clin. Invest. 85, 121 (1990). https://doi.org/10.1172/jci114401

    Article  Google Scholar 

  56. A. Askari, Pharmacol. Res. Perspect. 7 (4), e00505 (2019). https://doi.org/10.1002/prp2.505

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-015-00079), as well as by the Fundamental Research Program of the State Academies of Sciences for 2013–2020 (GP-14, Section 64).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ankudinov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

STATEMENT ON THE WELFARE OF ANIMALS

Experiments were designed in agreement with the European Council Directive of November 24, 1986 (86/609/EEC). All experimental procedures involving animals were approved by the Committee on Animal Maintenance and Use of the Pavlov Institute of Physiology, license no. 12/03 (April 20, 2018).

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalisov, M.M., Penniyaynen, V.A., Podzorova, S.A. et al. On the Molecular Nature of Differences in the Response of Sensory Neurons and Fibroblasts to Ouabain. Tech. Phys. 66, 734–740 (2021). https://doi.org/10.1134/S1063784221050121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221050121

Navigation