Skip to main content
Log in

Application of atomic force microscopy for studying intracellular signalization in neurons

  • Biomedical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The first attempt is made at applying the method of atomic force microscopy (AFM) for determining the molecular mechanisms of intracellular signalization with the participation of Na+, K+-ATPhase playing an important role of a signal transductor (amplifier). The AFM method combined with the organotypic cultivation makes it possible to obtain quantitative information on the Young moduli of living neurons and cells subjected to the action of very low concentrations of ouabain. This substance is known to trigger in this case the intracellular signalization processes by transferring a molecular signal to the genome of a cell. The cell response is manifested in a sharp intensification of protein synthesis accompanied by a rearrangement of the cytoskeleton and activation of enzyme signal pathways in a cytosol. AFM measurements of the images of the cell surface relief are performed using the PeakForce quantitative nanomechanical properties mapping PeakForce QNM mode. The Young moduli of control neurons and of sensory neurons under the action of ouabain are measured simultaneously. It is found that the activation of the signal-transducing function of Na+, K+-ATPhase triggers intracellular signal cascades, which increase the cell stiffness. The application of the AFM method in further studies of the mechanisms of intracellular molecular processes appears as promising. Its combination with inhibitory analysis will clarify the role of individual molecules (e.g., a number of ferments) in regulation of growth and development of living organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Xie, Cell Mol. Biol. 47, 383 (2001).

    Google Scholar 

  2. L. V. Borovikova, D. V. Borovikov, V. V. Ermishkin, and S. V. Revenko, Prim. Sens. Neuron. 2, 65 (1997).

    Article  Google Scholar 

  3. M. S. Gold, D. B. Reichling, M. J. Shuster, and J. D. Levine, Proc. Natl. Acad. Sci. USA 93, 1108 (1996).

    Article  ADS  Google Scholar 

  4. B. V. Krylov, A. V. Derbenev, S. A. Podzorova, M. I. Lyudyno, A. V. Kuz’min, and N, L, Izvarina, Neurosci. Behav. Physiol. 30, 431 (2000).

    Article  Google Scholar 

  5. E. V. Lopatina, I. L. Yachnev, V. A. Penniyaynen, V. B. Plakhova, S. A. Podzorova, T. N. Shelykh, I. V. Rogachevsky, I. P. Butkevich, V. A. Mikhailenko, A. V. Kipenko, and B. V. Krylov, Med. Chem. 8, 33 (2012).

    Article  Google Scholar 

  6. J. M. Hamlyn, B. P. Hamilton, and P. Manunta, J. Hypertens. 14, 151 (1996).

    Article  Google Scholar 

  7. H. J. Butt, E. K. Wolff, S. A. Gould, B. Dixon Northern, C. M. Peterson, and P. K. Hansma, J. Struct. Biol. 105, 54 (1990).

    Article  Google Scholar 

  8. W. Haberle, J. K. Horber, and G. Binnig, J. Vac. Sci. Technol. 9, 1210 (1991).

    Article  Google Scholar 

  9. F. Braet and C. Rotsch, Appl. Phys. A 66, 575 (1998).

    Article  ADS  Google Scholar 

  10. X. Chen, L. Feng, H. Jin, S. Feng, and Y. Yu, Clin. Hemorheol. Microcirc. 43, 243 (2009).

    Google Scholar 

  11. J. Domke, W. J. Parak, M. George, H. E. Gaub, and M. Radmacher, Eur. Biophys. J. 28, 179 (1999).

    Article  Google Scholar 

  12. E. Henderson, P. G. Haydon, and D. S. Sakaguchi, Science 257, 1944 (1992).

    Article  ADS  Google Scholar 

  13. R. Nowakowski, P. Luckham, and P. Winlove, Biochim. Biophys. Acta 1514, 170 (2001).

    Article  Google Scholar 

  14. C. Rotsch and M. Radmacher, Biophys. J. 78, 520 (2000).

    Article  ADS  Google Scholar 

  15. E. Spedden and C. Staii, Int. J. Mol. Sci. 14, 16124 (2013).

    Article  Google Scholar 

  16. F. X. Jiang, D. C. Lin, F. Horkay, and N. A. Langrana, Ann. Biomed. Eng. 39, 706 (2011).

    Article  Google Scholar 

  17. M. Mustata, K. Ritchiea, and H. A. McNally, J. Neurosci. Methods. 186, 35 (2010).

    Article  Google Scholar 

  18. V. A. Penniyainen, I. L. Yachnev, A. V. Kipenk, E. V. Lopatina, and B. V. Krylov, Sens. Sist. 28, 90 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Krylov.

Additional information

Original Russian Text © A.V. Ankudinov, M.M. Khalisov, V.A. Penniyainen, S.A. Podzorova, B.V. Krylov, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 10, pp. 126–130.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ankudinov, A.V., Khalisov, M.M., Penniyainen, V.A. et al. Application of atomic force microscopy for studying intracellular signalization in neurons. Tech. Phys. 60, 1540–1544 (2015). https://doi.org/10.1134/S1063784215100047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215100047

Keywords

Navigation